11 resultados para analytics

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we discuss the state of the art of models for customer engagement and the problems that are inherent to calibrating and implementing these models. The authors first provide an overview of the data available for customer analytics and discuss recent developments. Next, the authors discuss the models used for studying customer engagement, where they distinguish the following stages: customer acquisition, customer development, and customer retention. Finally, they discuss several organizational issues of analytics for customer engagement, which constitute barriers for introducing analytics for customer engagement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the problem of low-dimensional visualisation of very high dimensional information sources for the purpose of situation awareness in the maritime environment. In response to the requirement for human decision support aids to reduce information overload (and specifically, data amenable to inter-point relative similarity measures) appropriate to the below-water maritime domain, we are investigating a preliminary prototype topographic visualisation model. The focus of the current paper is on the mathematical problem of exploiting a relative dissimilarity representation of signals in a visual informatics mapping model, driven by real-world sonar systems. A realistic noise model is explored and incorporated into non-linear and topographic visualisation algorithms building on the approach of [9]. Concepts are illustrated using a real world dataset of 32 hydrophones monitoring a shallow-water environment in which targets are present and dynamic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we evaluate and compare two representativeand popular distributed processing engines for large scalebig data analytics, Spark and graph based engine GraphLab. Wedesign a benchmark suite including representative algorithmsand datasets to compare the performances of the computingengines, from performance aspects of running time, memory andCPU usage, network and I/O overhead. The benchmark suite istested on both local computer cluster and virtual machines oncloud. By varying the number of computers and memory weexamine the scalability of the computing engines with increasingcomputing resources (such as CPU and memory). We also runcross-evaluation of generic and graph based analytic algorithmsover graph processing and generic platforms to identify thepotential performance degradation if only one processing engineis available. It is observed that both computing engines showgood scalability with increase of computing resources. WhileGraphLab largely outperforms Spark for graph algorithms, ithas close running time performance as Spark for non-graphalgorithms. Additionally the running time with Spark for graphalgorithms over cloud virtual machines is observed to increaseby almost 100% compared to over local computer clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the moment, the phrases “big data” and “analytics” are often being used as if they were magic incantations that will solve all an organization’s problems at a stroke. The reality is that data on its own, even with the application of analytics, will not solve any problems. The resources that analytics and big data can consume represent a significant strategic risk if applied ineffectively. Any analysis of data needs to be guided, and to lead to action. So while analytics may lead to knowledge and intelligence (in the military sense of that term), it also needs the input of knowledge and intelligence (in the human sense of that term). And somebody then has to do something new or different as a result of the new insights, or it won’t have been done to any purpose. Using an analytics example concerning accounts payable in the public sector in Canada, this paper reviews thinking from the domains of analytics, risk management and knowledge management, to show some of the pitfalls, and to present a holistic picture of how knowledge management might help tackle the challenges of big data and analytics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade, there has been a trend where water utility companies aim to make water distribution networks more intelligent in order to improve their quality of service, reduce water waste, minimize maintenance costs etc., by incorporating IoT technologies. Current state of the art solutions use expensive power hungry deployments to monitor and transmit water network states periodically in order to detect anomalous behaviors such as water leakage and bursts. However, more than 97% of water network assets are remote away from power and are often in geographically remote underpopulated areas, facts that make current approaches unsuitable for next generation more dynamic adaptive water networks. Battery-driven wireless sensor/actuator based solutions are theoretically the perfect choice to support next generation water distribution. In this paper, we present an end-to-end water leak localization system, which exploits edge processing and enables the use of battery-driven sensor nodes. Our system combines a lightweight edge anomaly detection algorithm based on compression rates and an efficient localization algorithm based on graph theory. The edge anomaly detection and localization elements of the systems produce a timely and accurate localization result and reduce the communication by 99% compared to the traditional periodic communication. We evaluated our schemes by deploying non-intrusive sensors measuring vibrational data on a real-world water test rig that have had controlled leakage and burst scenarios implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The business process outsourcing (BPO) industry in India is evolving rapidly, and one of the key characteristics of this industry is the emergence of high-end services offered by knowledge processing outsourcing (KPO) organizations. These organizations are set to grow at a tremendous pace. Given the people-intensive nature of this industry, efficient employee management is bound to play a critical role. The literature lacks studies offering insights into the HR challenges involved and the ways in which they are addressed by KPOs. The purpose of this paper is to attempt to fill this gap by presenting findings from an in-depth case study of a KPO organization. Design/methodology/ approach: To achieve the research objective we adopted an in-depth case study approach. The research setting was that of a KPO organization in India, which specialises in offering complex analytics, accounting and support services to the real estate and financial services industries. Findings: The results of this study highlight the differences in the nature of work characteristics in such organizations as compared to call centres. The study also highlights some of the key people management challenges that these organizations face like attracting and retaining talent. The case company adopts formal, structured, transparent and innovative human resource practices. The study also highlights that such enlightened human resource practices stand on the foundations laid by an open work environment and facilitative leadership. Research limitations/implications: One of the key limitations is that the analysis is based on primary data from a single case study and only 18 interviews. The analysis contributes to the fields of KPO, HRM and India and has key messages for policy makers. Originality/value: The literature on outsourcing has in general focused on call centres established in the developed world. However, the booming BPO industry in India is also beginning to offer high-end services, which are far above the typical call centres. These KPOs and their people management challenges are relatively unexplored territories in the literature. By conducting this study in an emerging market (India) and focusing on people-related challenges in KPOs, this study attempts to provide a fresh perspective to the extant BPO literature. © Emerald Group Publishing Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As many strategically important aspects of marketing are addressed by other functions in the organization, the decreased influence of the marketing department within companies is a topic of growing debate. In this study, the authors investigate this diminished influence and assess its determinants and consequences. They interviewed 25 marketing and finance executives from leading Dutch firms. They also conducted a large-scale Internet-based survey of several hundred marketing, finance, and general managers. Their results show that accountability and the innovativeness of the marketing department are the major drivers of the marketing department’s influence. They also demonstrate that a firm’s short-term orientation is negatively related to the influence of the marketing department. Marketing influence is positively related to market orientation, which is positively related to firm performance. Their results do not support prior findings of a direct positive link between marketing influence and firm performance, which might suggest that there is no need for a strong marketing department. The study suggests that an influential marketing department is relevant primarily when the firm is not market oriented. When firms are market oriented, a less influential marketing department does not lower their performance. Hence, it appears that they can choose to have an influential or noninfluential marketing department without any repercussions for their performance. Marketing activities could move to other functions. The authors suggest that marketing departments should aim to retain their influence. Dispersing marketing decision making among many functions can cause a lack of coordination; customers also lose their advocate within the firm. How can marketing departments regain their influence? The authors suggest two general solutions. First, marketing departments should become more accountable by linking marketing actions and policies with financial results. Marketers should become capable in analytics and finance. Second, they should become more innovative by increasing their share in new product or service concepts. They can do so by using their knowledge of the market and customers to contribute to new product or service development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a wide range of operational research (OR) optimization examples, Applied Operational Research with SAS demonstrates how the OR procedures in SAS work. The book is one of the first to extensively cover the application of SAS procedures to OR problems, such as single criterion optimization, project management decisions, printed circuit board assembly, and multiple criteria decision making. The text begins with the algorithms and methods for linear programming, integer linear programming, and goal programming models. It then describes the principles of several OR procedures in SAS. Subsequent chapters explain how to use these procedures to solve various types of OR problems. Each of these chapters describes the concept of an OR problem, presents an example of the problem, and discusses the specific procedure and its macros for the optimal solution of the problem. The macros include data handling, model building, and report writing. While primarily designed for SAS users in OR and marketing analytics, the book can also be used by readers interested in mathematical modeling techniques. By formulating the OR problems as mathematical models, the authors show how SAS can solve a variety of optimization problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to assess high-dimensional visualisation, combined with pattern matching, as an approach to observing dynamic changes in the ways people tweet about science topics. Design/methodology/approach - The high-dimensional visualisation approach was applied to three scientific topics to test its effectiveness for longitudinal analysis of message framing on Twitter over two disjoint periods in time. The paper uses coding frames to drive categorisation and visual analytics of tweets discussing the science topics. Findings - The findings point to the potential of this mixed methods approach, as it allows sufficiently high sensitivity to recognise and support the analysis of non-trending as well as trending topics on Twitter. Research limitations/implications - Three topics are studied and these illustrate a range of frames, but results may not be representative of all scientific topics. Social implications - Funding bodies increasingly encourage scientists to participate in public engagement. As social media provides an avenue actively utilised for public communication, understanding the nature of the dialog on this medium is important for the scientific community and the public at large. Originality/value - This study differs from standard approaches to the analysis of microblog data, which tend to focus on machine driven analysis large-scale datasets. It provides evidence that this approach enables practical and effective analysis of the content of midsize to large collections of microposts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson's disease is a complex heterogeneous disorder with urgent need for disease-modifying therapies. Progress in successful therapeutic approaches for PD will require an unprecedented level of collaboration. At a workshop hosted by Parkinson's UK and co-organized by Critical Path Institute's (C-Path) Coalition Against Major Diseases (CAMD) Consortiums, investigators from industry, academia, government and regulatory agencies agreed on the need for sharing of data to enable future success. Government agencies included EMA, FDA, NINDS/NIH and IMI (Innovative Medicines Initiative). Emerging discoveries in new biomarkers and genetic endophenotypes are contributing to our understanding of the underlying pathophysiology of PD. In parallel there is growing recognition that early intervention will be key for successful treatments aimed at disease modification. At present, there is a lack of a comprehensive understanding of disease progression and the many factors that contribute to disease progression heterogeneity. Novel therapeutic targets and trial designs that incorporate existing and new biomarkers to evaluate drug effects independently and in combination are required. The integration of robust clinical data sets is viewed as a powerful approach to hasten medical discovery and therapies, as is being realized across diverse disease conditions employing big data analytics for healthcare. The application of lessons learned from parallel efforts is critical to identify barriers and enable a viable path forward. A roadmap is presented for a regulatory, academic, industry and advocacy driven integrated initiative that aims to facilitate and streamline new drug trials and registrations in Parkinson's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Semantic Web has come a long way since its inception in 2001, especially in terms of technical development and research progress. However, adoption by non- technical practitioners is still an ongoing process, and in some areas this process is just now starting. Emergency response is an area where reliability and timeliness of information and technologies is of essence. Therefore it is quite natural that more widespread adoption in this area has not been seen until now, when Semantic Web technologies are mature enough to support the high requirements of the application area. Nevertheless, to leverage the full potential of Semantic Web research results for this application area, there is need for an arena where practitioners and researchers can meet and exchange ideas and results. Our intention is for this workshop, and hopefully coming workshops in the same series, to be such an arena for discussion. The Extended Semantic Web Conference (ESWC - formerly the European Semantic Web conference) is one of the major research conferences in the Semantic Web field, whereas this is a suitable location for this workshop in order to discuss the application of Semantic Web technology to our specific area of applications. Hence, we chose to arrange our first SMILE workshop at ESWC 2013. However, this workshop does not focus solely on semantic technologies for emergency response, but rather Semantic Web technologies in combination with technologies and principles for what is sometimes called the "social web". Social media has already been used successfully in many cases, as a tool for supporting emergency response. The aim of this workshop is therefore to take this to the next level and answer questions like: "how can we make sense of, and furthermore make use of, all the data that is produced by different kinds of social media platforms in an emergency situation?" For the first edition of this workshop the chairs collected the following main topics of interest: • Semantic Annotation for understanding the content and context of social media streams. • Integration of Social Media with Linked Data. • Interactive Interfaces and visual analytics methodologies for managing multiple large-scale, dynamic, evolving datasets. • Stream reasoning and event detection. • Social Data Mining. • Collaborative tools and services for Citizens, Organisations, Communities. • Privacy, ethics, trustworthiness and legal issues in the Social Semantic Web. • Use case analysis, with specific interest for use cases that involve the application of Social Media and Linked Data methodologies in real-life scenarios. All of these, applied in the context of: • Crisis and Disaster Management • Emergency Response • Security and Citizen Journalism The workshop received 6 high-quality paper submissions and based on a thorough review process, thanks to our program committee, the decision was made to accept four of these papers for the workshop (67% acceptance rate). These four papers can be found later in this proceedings volume. Three out of four of these papers particularly discuss the integration and analysis of social media data, using Semantic Web technologies, e.g. for detecting complex events in social media streams, for visualizing and analysing sentiments with respect to certain topics in social media, or for detecting small-scale incidents entirely through the use of social media information. Finally, the fourth paper presents an architecture for using Semantic Web technologies in resource management during a disaster. Additionally, the workshop featured an invited keynote speech by Dr. Tomi Kauppinen from Aalto university. Dr. Kauppinen shared experiences from his work on applying Semantic Web technologies to application fields such as geoinformatics and scientific research, i.e. so-called Linked Science, but also recent ideas and applications in the emergency response field. His input was also highly valuable for the roadmapping discussion, which was held at the end of the workshop. A separate summary of the roadmapping session can be found at the end of these proceedings. Finally, we would like to thank our invited speaker Dr. Tomi Kauppinen, all our program committee members, as well as the workshop chair of ESWC2013, Johanna Völker (University of Mannheim), for helping us to make this first SMILE workshop a highly interesting and successful event!