3 resultados para air quality measurements
em Aston University Research Archive
Resumo:
Local air quality was one of the main stimulants for low carbon vehicle development during the 1990s. Issues of national fuel security and global air quality (climate change) have added pressure for their development, stimulating schemes to facilitate their deployment in the UK. In this case study, Coventry City Council aimed to adopt an in-house fleet of electric and hybrid-electric vehicles to replace business mileage paid for in employee's private vehicles. This study made comparisons between the proposed vehicle technologies, in terms of costs and air quality, over projected scenarios of typical use. The study found that under 2009 conditions, the electric and hybrid fleet could not compete on cost with the current business model because of untested assumptions, but certain emissions were significantly reduced >50%. Climate change gas emissions were most drastically reduced where electric vehicles were adopted because the electricity supply was generated by renewable energy sources. The study identified the key cost barriers and benefits to adoption of low-emission vehicles in current conditions in the Coventry fleet. Low-emission vehicles achieved significant air pollution-associated health cost and atmospheric emission reductions per vehicle, and widespread adoption in cities could deliver significant change. © The Author 2011. Published by Oxford University Press. All rights reserved.
Resumo:
The automatic interpolation of environmental monitoring network data such as air quality or radiation levels in real-time setting poses a number of practical and theoretical questions. Among the problems found are (i) dealing and communicating uncertainty of predictions, (ii) automatic (hyper)parameter estimation, (iii) monitoring network heterogeneity, (iv) dealing with outlying extremes, and (v) quality control. In this paper we discuss these issues, in light of the spatial interpolation comparison exercise held in 2004.
Resumo:
A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.