2 resultados para air permeability
em Aston University Research Archive
Resumo:
The thesis describes a programme of research designed to identify concretes for application at cryogenic temperature, in particular for storage of Liquefield Natural Gas which is maintained at a temperature of -165oC. The programme was undertaken in two stages. Stage 1 involved screening tests on seventeen concrete mixes to investigate the effects of strength grade (and water/cement ratio), air entrainment, aggregate type and cement type. Four mixes were selected on the basis of low temperature strength, residual strength after thermal cycling and permeability at ambient temperature. In Stage 2 the selected mixes were subjected to a comprehensive range of tests to measure those properties which determine the leak tightness of a concrete tank at temperatures down to -165oC. These included gas permeability; tensile strength, strain capacity, thermal expansion coefficient and elastic modulus, which in combination provide a measure of resistance to cracking; and bond to reinforcement, which is one of the determining factors regarding crack size and spacing. The results demonstrated that the properties of concrete were generally enhanced at cryogenic temperature, with reduced permeability, reduced crack proneness and, by virtue of increased bond to reinforcement, better control of cracking should it occur. Of the concretes tested, a lightweight mix containing sintered PFA aggregate exhibited the best performance at ambient and cryogenic temperature, having appreciably lower permeability and higher crack resistance than normal weight concretes of the same strength grade. The lightweight mix was most sensitive to thermal cycling, but there was limited evidence that this behaviour would not be significant if the concrete was prestressed. Relationships between various properties have been identified, the most significant being the reduction in gas permeability with increasing strain capacity. The structural implications of the changing properties of the concrete have also been considered.
Resumo:
Functionality of an open graded friction course (OGFC) depends on the high interconnected air voids or pores of the OGFC mixture. The authors' previous study indicated that the pores in the OGFC mixture were easily clogged by rutting deformation. Such a deformation-related clogging can cause a significant rutting-induced permeability loss in the OGFC mixture. The objective of this study was to control and reduce the rutting-induced permeability loss of the OGFC based on mixture design and layer thickness. Eight types of the OGFC mixtures with different air void contents, gradations, and nominal maximum aggregate sizes were fabricated in the laboratory. Wheel-tracking rutting tests were conducted on the OGFC slabs to simulate the deformation-related clogging. Permeability tests after different wheel load applications were performed on the rutted OGFC slabs using a falling head permeameter developed in the authors' previous study. The relationships between permeability loss and rutting depth as well as dynamic stability were developed based on the eight OGFC mixtures' test results. The thickness effects of the single-layer and the two-layer OGFC slabs were also discussed in terms of deformation-related clogging and the rutting-induced permeability loss. Results showed that the permeability coefficient decreases linearly with an increasing rutting depth of the OGFC mixtures. Rutting depth was recommended as a design index to control permeability loss of the OGFC mixture rather than the dynamic stability. Permeability loss due to deformation-related clogging can be effectively reduced by using a thicker single-layer OGFC or two-layer OGFC.