3 resultados para air induction nozzles

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The literature pertaining to the key stages of spray drying has been reviewed in the context of the mathematical modelling of drier performance. A critical review is also presented of previous spray drying models. A new mathematical model has been developed for prediction of spray drier performance. This is applicable to slurries of rigid, porous crust-forming materials to predict trajectories and drying profiles for droplets with a distribution of sizes sprayed from a centrifugal pressure nozzle. The model has been validated by comparing model predictions to experimental data from a pilot-scale counter-current drier and from a full-scale co-current drier. For the latter, the computed product moisture content was within 2%, and the computed air exit temperature within 10oC of experimental data. Air flow patterns have been investigated in a 1.2m diameter transparent countercurrent spray tower by flow visualisation. Smoke was introduced into various zones within the tower to trace the direction, and gauge the intensity, of the air flow. By means of a set of variable-angle air inlet nozzles, a variety of air entry configurations was investigated. The existence of a core of high rotational and axial velocity channelling up the axis of the tower was confirmed. The stability of flow within the core was found to be strongly dependent upon the air entry arrangement. A probe was developed for the measurement of air temperature and humidity profiles. This was employed for studying evaporation of pure water drops in a 1.2m diameter pilot-scale counter-current drier. A rapid approach to the exit air properties was detected within a 1m distance from the air entry ports. Measured radial profiles were found to be virtually flat but, from the axial profiles, the existence of plug-flow, well-mixed-flow and some degree of air short-circuiting can be inferred. The model and conclusions should assist in the improved design and optimum operation of industrial spray driers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In induction machines the tooth frequency losses due to permeance variation constitute a signif'icant, portion of the total loss. In order to predict and estimate these losses it, is essential to obtain a clear understanding of the no-load distribution of the air gap magnetic field and the magnitude of flux pulsation in both stator and rotor teeth. The existing theories and methods by which the air gap permeance variation in a doubly slotted structure is calculated are either empirical or restricted. The main objective of this thesis is to obtain a detailed analysis of the no-load air gap magnetic field distribution and the effect of air gap geometry on the magnitude and waveform of the tooth flux pulsation. In this thesis a detaiiled theoretical and experimental analysis of flux distribution not only leads to a better understanding of the distribution of no-load losses but also provides theoretical analysis for calculating the losses with greater accuracy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emerging role of the multifunctional enzyme, Transglutaminase 2 (TG2) in Cystic Fibrosis (CF) has been linked to its increased expression and intracellular transamidating activity. However, a full understanding of the molecular mechanisms involved still remains unclear despite numerous studies that have attempted to delineate this process. These mechanisms include the NFκB and TGFβ1 pathway amongst others. This study reveals for the first time that the development of fibrosis in CF is due to a TG2-driven epithelial to mesenchymal transition (EMT) via a mechanism involving the activation of the pro-fibrotic cytokine TGFβ1. Using a human ΔF508/W1282X CFTR CF mutant bronchial cell (IB3-1), its CFTR corrected “add-back” cell (C38) as well as a primary human bronchial epithelial cell (HBEC), elevated TG2 levels in the CFTR mutant IB3 cell were shown to activate latent TGFβ1 leading to increased levels found in the culture medium. This activation process was blocked by the presence of cell-permeable and impermeable TG2 inhibitors while inhibition of TGFβ1 receptors blocked TG2 expression. This demonstrates the direct link between TG2 and TGFβ1 in CF. The presence of active cell surface TG2 correlated with an increase in the expression of EMT markers, associated with the CF mutant cells, which could be blocked by the presence of TG2 inhibitors. This was mimicked using the “addback” C38 cell and the primary human bronchial epithelial cell, HBEC, where an increase in TG2 expression and activity in the presence of TGFβ1 concurred with a change in cell morphology and an elevation in EMT marker expression. Conversely, a knockdown of TG2 in the CF mutant IB3 cells illustrated that an inhibition of TG2 blocks the increase in EMT marker expression as well as causing an increase in TEER measurement. This together with an increase in the migration profile of the CF mutant IB3 cell against the “add-back” C38 cell suggests that TG2 drives a mesenchymal phenotype in CF. The involvement of TG2 activated TGFβ1 in CF was further demonstrated with an elevation/inhibition of p- SMAD 2 and 3 activation in the presence of TGFβ1/TG2 cell-permeable/impermeable inhibitors respectively. The use of a comparative airway cell model where bronchial epithelial cells were cultured at the air liquid interface (ALI) confirmed the observations in submerged culture depicting the robustness of the model and reiterated the importance of TG2 in CF. Using a CFTR corrector combined with TG2 inhibitors, this study showed that the correction and stabilisation of the ΔF508 CFTR mutation in the mutant cell forged an increase in matured CFTR copies trafficking to the apical surface by circumventing proteosomal degradation. Thus the results presented here suggests that TG2 expression is elevated in the CFTR mutant bronchial cell via a TGFβ1 driven positive feedback cycle whereby activation of latent TGFβ1 by TG2 leads in turn to an elevation in its own expression by TGFβ1. This vicious cycle then drives EMT in CF ultimately leading to lung remodelling and fibrosis. Importantly, TG2 inhibition blocks TGFβ1 activation leading to an inhibition of EMT and further blocks the emerging fibrosis, thus stabilizing and supporting the maturation, trafficking and conductance of CFTR channels at the apical surface.