30 resultados para aggregate volatility
em Aston University Research Archive
Resumo:
It is well known that one of the obstacles to effective forecasting of exchange rates is heteroscedasticity (non-stationary conditional variance). The autoregressive conditional heteroscedastic (ARCH) model and its variants have been used to estimate a time dependent variance for many financial time series. However, such models are essentially linear in form and we can ask whether a non-linear model for variance can improve results just as non-linear models (such as neural networks) for the mean have done. In this paper we consider two neural network models for variance estimation. Mixture Density Networks (Bishop 1994, Nix and Weigend 1994) combine a Multi-Layer Perceptron (MLP) and a mixture model to estimate the conditional data density. They are trained using a maximum likelihood approach. However, it is known that maximum likelihood estimates are biased and lead to a systematic under-estimate of variance. More recently, a Bayesian approach to parameter estimation has been developed (Bishop and Qazaz 1996) that shows promise in removing the maximum likelihood bias. However, up to now, this model has not been used for time series prediction. Here we compare these algorithms with two other models to provide benchmark results: a linear model (from the ARIMA family), and a conventional neural network trained with a sum-of-squares error function (which estimates the conditional mean of the time series with a constant variance noise model). This comparison is carried out on daily exchange rate data for five currencies.
Resumo:
In January 2001 Greece joined the eurozone. The aim of this article is to examine whether an intention to join the eurozone had any impact on exchange rate volatility. We apply the Iterated Cumulative Sum of Squares (ICSS) algorithm of Inclan and Tiao (1994) to a set of Greek drachma exchange rate changes. We find evidence to suggest that the unconditional volatility of the drachma exchange rate against the dollar, British pound, yen, German mark and ECU/Euro was nonstationary, exhibiting a large number of volatility changes prior to European Monetary Union (EMU) membership. We then use a news archive service to identify the events that might have caused exchange rate volatility to shift. We find that devaluation of the drachma increased exchange rate volatility but ERM membership and a commitment to joining the eurozone led to lower volatility. Our findings therefore suggest that a strong commitment to join the eurozone may be sufficient to reduce some exchange rate volatility which has implications for countries intending to join the eurozone in the future.
Resumo:
In this paper the performance of opening and closing returns, for the components of the FT-30 will be studied. It will be shown that for these stocks opening returns have higher volatility and a greater tendency towards negative serial correlation than closing returns. Unlike previous studies this contrasting performance cannot solely be attributed to differences in the trading mechanism across the trading day. All the stocks used in our sample trade thought the day using a uniform trading mechanism. In this paper, we suggest that it is differences in the speed that closing and opening returns adjust to new information that causes differences in return performance. By estimating the Amihud and Mendelson (1987) [Amihud, Yakov, & Mendelson, Haim (1987). Trading mechanisms and stock returns: An empirical investigation, Journal of Finance, 62 533-553.] partial adjustment model with noise, we show that opening returns have a tendency towards over-reaction, while closing returns have a tendency towards under-reaction. We suggest that it is these differences that cause a substantial proportion (although not all) of the asymmetric return patterns associated with opening and closing returns. © 2005 Elsevier Inc. All rights reserved.
Resumo:
An expanding literature exists to suggest that the trading mechanism can influence the volatility of security returns. This study adds to this literature by examining the impact that the introduction of SETS, on the London Stock Exchange, had on the volatility of security returns. Using a Markov switching regime change model security volatility is categorized as being in a regime of either high or low volatility. It is shown that prior to the introduction of SETS securities tended to be in a low volatility regime. At the time SETS was introduced securities moved to a high volatility regime. This suggests that volatility increased when SETS was introduced.
Resumo:
In multilevel analyses, problems may arise when using Likert-type scales at the lowest level of analysis. Specifically, increases in variance should lead to greater censoring for the groups whose true scores fall at either end of the distribution. The current study used simulation methods to examine the influence of single-item Likert-type scale usage on ICC(1), ICC(2), and group-level correlations. Results revealed substantial underestimation of ICC(1) when using Likert-type scales with common response formats (e.g., 5 points). ICC(2) and group-level correlations were also underestimated, but to a lesser extent. Finally, the magnitude of underestimation was driven in large part to an interaction between Likert-type scale usage and the amounts of within- and between-group variance. © Sage Publications.
Resumo:
The major role of information and communication technology (ICT) in the new economy is well documented: countries worldwide are pouring resources into their ICT infrastructure despite the widely acknowledged “productivity paradox”. Evaluating the contribution of ICT investments has become an elusive but important goal of IS researchers and economists. But this area of research is fraught with complexity and we have used Solow's Residual together with time-series analysis tools to overcome some methodological inadequacies of previous studies. Using this approach, we conduct a study of 20 countries to determine if there was empirical evidence to support claims that ICT investments are worthwhile. The results show that ICT contributes to economic growth in many developed countries and newly industrialized economies (NIEs), but not in developing countries. We finally suggest ICT-complementary factors, in an attempt to rectify possible flaws in ICT policies as a contribution towards improvement in global productivity.
Resumo:
Recently, Drǎgulescu and Yakovenko proposed an analytical formula for computing the probability density function of stock log returns, based on the Heston model, which they tested empirically. Their research design inadvertently favourably biased the fit of the data to the Heston model, thus overstating their empirical results. Furthermore, Drǎgulescu and Yakovenko did not perform any goodness-of-fit statistical tests. This study employs a research design that facilitates statistical tests of the goodness-of-fit of the Heston model to empirical returns. Robustness checks are also performed. In brief, the Heston model outperformed the Gaussian model only at high frequencies and even so does not provide a statistically acceptable fit to the data. The Gaussian model performed (marginally) better at medium and low frequencies, at which points the extra parameters of the Heston model have adverse impacts on the test statistics. © 2005 Taylor & Francis Group Ltd.
Resumo:
A two-factor no-arbitrage model is used to provide a theoretical link between stock and bond market volatility. While this model suggests that short-term interest rate volatility may, at least in part, drive both stock and bond market volatility, the empirical evidence suggests that past bond market volatility affects both markets and feeds back into short-term yield volatility. The empirical modelling goes on to examine the (time-varying) correlation structure between volatility in the stock and bond markets and finds that the sign of this correlation has reversed over the last 20 years. This has important implications far portfolio selection in financial markets. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This study investigates the relationship between aggregate job satisfaction and organizational innovation. In a sample of manufacturing companies, data were gathered from 3717 employees in 28 UK manufacturing organizations about their job satisfaction and aggregated to the organizational level. Data on innovation in technology/processes were gathered from multiple respondents in the same organizations 24 months later. The results revealed that aggregate job satisfaction was a significant predictor of subsequent organizational innovation, even after controlling for prior organizational innovation and profitability. Moreover the data indicated that the relationship between aggregate job satisfaction and innovation in production technology/processes was moderated by two factors: job variety and a commitment to "single status". Unlike previous studies, we conceptualize job satisfaction at the aggregate rather than the individual level and examine innovation rather than creativity. We propose that where the majority of employees experience job satisfaction, they will endorse rather than resist innovation and work collaboratively to implement as well as to generate creative ideas.
Resumo:
This paper investigates whether equity market volatility in one major market is related to volatility elsewhere. This paper models the daily conditional volatility of equity market wide returns as a GARCH-(1,1) process. Such a model will capture the changing nature of the conditional variance through time. It is found that the correlation between the conditional variances of major equity markets has increased substantially over the last two decades. This supports work which has been undertaken on conditional mean returns which indicates there has been an increase in equity market integration.
Resumo:
The techniques and insights from two distinct areas of financial economic modelling are combined to provide evidence of the influence of firm size on the volatility of stock portfolio returns. Portfolio returns are characterized by positive serial correlation induced by the varying levels of non-synchronous trading among the component stocks. This serial correlation is greatest for portfolios of small firms. The conditional volatility of stock returns has been shown to be well represented by the GARCH family of statistical processes. Using a GARCH model of the variance of capitalization-based portfolio returns, conditioned on the autocorrelation structure in the conditional mean, striking differences related to firm size are uncovered.
Resumo:
The paper investigates the impact that the relaxation of UK exchange controls in October 1979, had on the transmission of equity market volatility from the UK to other major equity markets. It is suggested that the existence of exchange controls in the UK was an important source of market segmentation which disturbed the transmission of shocks from one country to another, even when shocks contained global information. It is found that when a spillover GARCH(1,1) model is estimated for the five years before and after the removal of exchange controls, volatility shocks spill over from the UK to other markets much more strongly after the removal of exchange controls. This appears to suggest that volatility as well as returns have become more closely related since the UK removed exchange controls.
Resumo:
We provide evidence of the nature of the transmission of volatility within the UK stock market. We find a distinct asymmetry in that shocks to the return volatility of a portfolio of relatively large firms influence the future volatility of a portfolio of relatively small firms, but find that the reverse is not the case. The characteristics of the volatility process suggest that this result is not caused by thin trading.
Resumo:
The fundamental problem faced by noninvasive neuroimaging techniques such as EEG/MEG1 is to elucidate functionally important aspects of the microscopic neuronal network dynamics from macroscopic aggregate measurements. Due to the mixing of the activities of large neuronal populations in the observed macroscopic aggregate, recovering the underlying network that generates the signal in the absence of any additional information represents a considerable challenge. Recent MEG studies have shown that macroscopic measurements contain sufficient information to allow the differentiation between patterns of activity, which are likely to represent different stimulus-specific collective modes in the underlying network (Hadjipapas, A., Adjamian, P., Swettenham, J.B., Holliday, I.E., Barnes, G.R., 2007. Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex. NeuroImage 35, 518–530). The next question arising in this context is whether aspects of collective network activity can be recovered from a macroscopic aggregate signal. We propose that this issue is most appropriately addressed if MEG/EEG signals are to be viewed as macroscopic aggregates arising from networks of coupled systems as opposed to aggregates across a mass of largely independent neural systems. We show that collective modes arising in a network of simulated coupled systems can be indeed recovered from the macroscopic aggregate. Moreover, we show that nonlinear state space methods yield a good approximation of the number of effective degrees of freedom in the network. Importantly, information about hidden variables, which do not directly contribute to the aggregate signal, can also be recovered. Finally, this theoretical framework can be applied to experimental MEG/EEG data in the future, enabling the inference of state dependent changes in the degree of local synchrony in the underlying network.