41 resultados para active and passive quantum error correction
em Aston University Research Archive
Resumo:
Progress on advanced active and passive photonic components that are required for high-speed optical communications over hollow-core photonic bandgap fiber at wavelengths around 2 μm is described in this paper. Single-frequency lasers capable of operating at 10 Gb/s and covering a wide spectral range are realized. A comparison is made between waveguide and surface normal photodiodes with the latter showing good sensitivity up to 15 Gb/s. Passive waveguides, 90° optical hybrids, and arrayed waveguide grating with 100-GHz channel spacing are demonstrated on a large spot-size waveguide platform. Finally, a strong electro-optic effect using the quantum confined Stark effect in strain-balanced multiple quantum wells is demonstrated and used in a Mach-Zehnder modulator capable of operating at 10 Gb/s.
Resumo:
The purpose of this study is to develop econometric models to better understand the economic factors affecting inbound tourist flows from each of six origin countries that contribute to Hong Kong’s international tourism demand. To this end, we test alternative cointegration and error correction approaches to examine the economic determinants of tourist flows to Hong Kong, and to produce accurate econometric forecasts of inbound tourism demand. Our empirical findings show that permanent income is the most significant determinant of tourism demand in all models. The variables of own price, weighted substitute prices, trade volume, the share price index (as an indicator of changes in wealth in origin countries), and a dummy variable representing the Beijing incident (1989) are also found to be important determinants for some origin countries. The average long-run income and own price elasticity was measured at 2.66 and – 1.02, respectively. It was hypothesised that permanent income is a better explanatory variable of long-haul tourism demand than current income. A novel approach (grid search process) has been used to empirically derive the weights to be attached to the lagged income variable for estimating permanent income. The results indicate that permanent income, estimated with empirically determined relatively small weighting factors, was capable of producing better results than the current income variable in explaining long-haul tourism demand. This finding suggests that the use of current income in previous empirical tourism demand studies may have produced inaccurate results. The share price index, as a measure of wealth, was also found to be significant in two models. Studies of tourism demand rarely include wealth as an explanatory forecasting long-haul tourism demand. However, finding a satisfactory proxy for wealth common to different countries is problematic. This study indicates with the ECM (Error Correction Models) based on the Engle-Granger (1987) approach produce more accurate forecasts than ECM based on Pesaran and Shin (1998) and Johansen (1988, 1991, 1995) approaches for all of the long-haul markets and Japan. Overall, ECM produce better forecasts than the OLS, ARIMA and NAÏVE models, indicating the superiority of the application of a cointegration approach for tourism demand forecasting. The results show that permanent income is the most important explanatory variable for tourism demand from all countries but there are substantial variations between countries with the long-run elasticity ranging between 1.1 for the U.S. and 5.3 for U.K. Price is the next most important variable with the long-run elasticities ranging between -0.8 for Japan and -1.3 for Germany and short-run elasticities ranging between – 0.14 for Germany and -0.7 for Taiwan. The fastest growing market is Mainland China. The findings have implications for policies and strategies on investment, marketing promotion and pricing.
Resumo:
In this paper, the authors use an exponential generalized autoregressive conditional heteroscedastic (EGARCH) error-correction model (ECM), that is, EGARCH-ECM, to estimate the pass-through effects of foreign exchange (FX) rates and producers’ prices for 20 U.K. export sectors. The long-run adjustment of export prices to FX rates and producers’ prices is within the range of -1.02% (for the Textiles sector) and -17.22% (for the Meat sector). The contemporaneous pricing-to-market (PTM) coefficient is within the range of -72.84% (for the Fuels sector) and -8.05% (for the Textiles sector). Short-run FX rate pass-through is not complete even after several months. Rolling EGARCH-ECMs show that the short and long-run effects of FX rate and producers’ prices fluctuate substantially as are asymmetry and volatility estimates before equilibrium is achieved.
Resumo:
Active mode locking is reported for a 1.55 μm semiconductor laser with a curved waveguide and passive mode expander, placed in a wavelength tunable external cavity. One facet with a very low reflectivity of 8×10−6 is achieved through a curved active region that tapers into an underlying passive waveguide, thus expanding the mode to give reduced divergence. 10 GHz pulses of 3.1 ps duration have been generated, with a linewidth of 0.81 nm.
Resumo:
We present an analytical model for describing complex dynamics of a hybrid system consisting of resonantly coupled classical resonator and quantum structures. Classical resonators in our model correspond to plasmonic metamaterials of various geometries, as well as other types of nano- and microstructure, the optical responses of which can be described classically. Quantum resonators are represented by atoms or molecules, or their aggregates (for example, quantum dots, carbon nanotubes, dye molecules, polymer or bio-molecules etc), which can be accurately modelled only with the use of the quantum mechanical approach. Our model is based on the set of equations that combines well established density matrix formalism appropriate for quantum systems, coupled with harmonic-oscillator equations ideal for modelling sub-wavelength plasmonic and optical resonators. As a particular example of application of our model, we show that the saturation nonlinearity of carbon nanotubes increases multifold in the resonantly enhanced near field of a metamaterial. In the framework of our model, we discuss the effect of inhomogeneity of the carbon-nanotube layer (bandgap value distribution) on the nonlinearity enhancement. © 2012 IOP Publishing Ltd.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
All four of the most important figures in the early twentieth-century development of quantum physics-Niels Bohr, Erwin Schroedinger, Werner Heisenberg and Wolfgang Pauli-had strong interests in the traditional mind-brain, or 'hard,' problem. This paper reviews their approach to this problem, showing the influence of Bohr's complementarity thesis, the significance of Schroedinger's small book, 'What is life?,' the updated Platonism of Heisenberg and, perhaps most interesting of all, the interaction of Carl Jung and Wolfgang Pauli in the latter's search for a unification of mind and matter. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Introduction Mild cognitive impairment (MCI) is a term used to describe a level of decline in cognition which is seen as an intermediate stage between normal ageing and dementia, and which many consider to be a prodromal stage of neurodegeneration that may become dementia. That is, it is perceived as a high risk level of cognitive change. The increasing burden of dementia in our society, but also our increasing understanding of its risk factors and potential interventions, require diligent management of MCI in order to find strategies that produce effective prevention of dementia. Aim To update knowledge regarding mild cognitive impairment, and to bring together and appraise evidence about the main features of clinical interest: definitions, prevalence and stability, risk factors, screening, and management and intervention. Methods Literature review and consensus of expert opinion. Results and conclusion MCI describes a level of impairment in which deteriorating cognitive functions still allow for reasonable independent living, including some compensatory strategies. While there is evidence for some early risk factors, there is still a need to more precisely delineate and distinguish early manifestations of frank dementia from cognitive impairment that is less likely to progress to dementia, and furthermore to develop improved prospective evidence for positive response to intervention. An important limitation derives from the scarcity of studies that take MCI as an endpoint. Strategies for effective management suffer from the same limitation, since most studies have focused on dementia. Behavioural changes may represent the most cost-effective approach.
Resumo:
Quantum dots (Qdots) are fluorescent nanoparticles that have great potential as detection agents in biological applications. Their optical properties, including photostability and narrow, symmetrical emission bands with large Stokes shifts, and the potential for multiplexing of many different colours, give them significant advantages over traditionally used fluorescent dyes. Here, we report the straightforward generation of stable, covalent quantum dot-protein A/G bioconjugates that will be able to bind to almost any IgG antibody, and therefore can be used in many applications. An additional advantage is that the requirement for a secondary antibody is removed, simplifying experimental design. To demonstrate their use, we show their application in multiplexed western blotting. The sensitivity of Qdot conjugates is found to be superior to fluorescent dyes, and comparable to, or potentially better than, enhanced chemiluminescence. We show a true biological validation using a four-colour multiplexed western blot against a complex cell lysate background, and have significantly improved previously reported non-specific binding of the Qdots to cellular proteins.
Resumo:
This is the second part of a review of the work of quantum physicists on the ‘hard part’ of the problem of mind. After an introduction which sets the scene and a brief review of contemporary work on the neural correlates of consciousness (NCC) the work of four prominent modern investigators is examined: J.C. Eccles/Friedrich Beck; Henry Stapp; Stuart Hameroff/Roger Penrose; David Bohm. With the exception of David Bohm, all attempt to show where in the brain’s microstructure quantum affects could make themselves felt. It is reluctantly concluded that none have neurobiological plausibility. They are all instances, to paraphrase T.H. Huxley, of a beautiful hypothesis destroyed by ugly facts. David Bohm does not attempt to fit his new quantum physics to contemporary neurobiology but instead asks for a radical rethink of our conventional scientific paradigm. He suggests that we should look towards developing a ‘pan-experientialism’ or ‘dual-aspect monism’ where consciousness goes ‘all the way down’ and that the ‘hard problem’ is not soluble within the framework of ideas provided by ‘classical’ natural science.
Resumo:
This research has two focal points: experiences of stigma and experiences of formal support services among teenage mothers. Twenty teenage mothers were interviewed in depth, ten from a one-to-one support service, and ten from a group based support service. Contributions to knowledge consisted of the following. First, regarding experiences of stigma, this research integrated concepts from the social psychology literature and established the effects of stigma which are experienced by teenage mothers, offering reasons for the same. Additionally, further coping mechanisms in response to being stigmatized were discovered and grouped into two new headings: active and passive coping mechanisms. It is acknowledged that for a minority of participants, stigma does have negative effects, however, the majority experiences no such serious negative effects. Secondly, regarding experiences of support services, this research was able to directly compare one-to-one with group based support for teenage mothers. Knowledge was unearthed as to influential factors in the selection of a mode of support and the functions of each of the modes of support, which were categorised under headings for ease of comparison. It was established that there is indeed a link between these two research foci in that both the one-to-one and group based support services fulfil a stigma management function, in which teenage mothers discuss the phenomenon, share experiences and offer advice to others. However, it was also established that this function is of minor importance compared to the other functions fulfilled by the support services.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
Background - The aim was to derive equations for the relationship between unaided vision and age, pupil diameter, iris colour and sphero-cylindrical refractive error. Methods - Data were collected from 663 healthy right eyes of white subjects aged 20 to 70 years. Subjective sphero-cylindrical refractive errors ranged from -6.8 to +9.4 D (mean spherical equivalent), -1.5 to +1.9 D (orthogonal component, J0) and -0.8 to 1.0 D (oblique component, J45). Cylinder axis orientation was orthogonal in 46 per cent of the eyes and oblique in 18 per cent. Unaided vision (-0.3 to +1.3 logMAR), pupil diameter (2.3 to 7.5 mm) and iris colour (67 per cent light/blue irides) was recorded. The sample included mostly females (60 per cent) and many contact lens wearers (42 per cent) and so the influences of these parameters were also investigated. Results - Decision tree analysis showed that sex, iris colour, contact lens wear and cylinder axis orientation did not influence the relationship between unaided vision and refractive error. New equations for the dependence of the minimum angle of resolution on age and pupil diameter arose from step backwards multiple linear regressions carried out separately on the myopes (2.91.scalar vector +0.51.pupil diameter -3.14 ) and hyperopes (1.55.scalar vector + 0.06.age – 3.45 ). Conclusion - The new equations may be useful in simulators designed for teaching purposes as they accounted for 81 per cent (for myopes) and 53 per cent (for hyperopes) of the variance in measured data. In comparison, previously published equations accounted for not more than 76 per cent (for myopes) and 24 per cent (for hyperopes) of the variance depending on whether they included pupil size. The new equations are, as far as is known to the authors, the first to include age. The age-related decline in accommodation is reflected in the equation for hyperopes.