2 resultados para acrocentric chromosome
em Aston University Research Archive
Resumo:
Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis. Methodology/Principal Findings: Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L). Conclusions: Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.
Resumo:
Aim: Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Method: Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). Results: In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. Interpretation: The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals. © 2013 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.