15 resultados para acid-base equilibrium
em Aston University Research Archive
Resumo:
Worldwide concern over dwindling fossil fuel reserves and impact of CO2 emissions on climate change means there is an urgent need to reduce our dependence on oil based sources of fuels and chemicals. The direct conversion of lignocellulosic derived glucose to 5-Hydroxymethylfurfural (5-HMF) is an attractive process for the production of chemicals and fuels but requires a bi-functional catalyst with acid-base or Lewis-Brönsted sites which can operate efficiently in the aqueous phase. While conventionally viewed as a superacid, the potential for tuning the acid strength in SO4/ZrO2 and potential for coupling bi-functional ZrO2-SO4/ZrO2 sites at low sulfate contents have been overlooked. Our previous work has shown effective tuning of the acid strength in SO4/ZrO2 can be used to direct selectivity in terpene isomerisation thus we rationalised control over HMF selectivity could achieved in a similar fashion. Here we report on a systematic study of the impact of acid properties of SO4/ZrO2 catalysts on the conversion of C6 sugars to 5-HMF in aqueous media and correlate the surface acid-base properties with glucose isomerisation and dehydration capabilities.
Resumo:
The telescopic conversion of glucose to fructose and then 5-hydroxymethylfurfural (5-HMF), the latter a potential, bio-derived platform chemical feedstock, has been explored over a family of bifunctional sulfated zirconia catalysts possessing tuneable acid-base properties. Characterisation by acid-base titration, XPS, XRD and Raman reveal that submonolayer SO4 coverages offer the ideal balance of basic and Lewis-Brønsted acid sites required to respectively isomerise glucose to fructose, and subsequently dehydrate fructose to 5-HMF. A constant acid site normalised turnover frequency is observed for fructose dehydration to 5-HMF, confirming a common Brønsted acid site is responsible for this transformation. This journal is © The Royal Society of Chemistry.
Resumo:
The telescopic conversion of glucose to fructose and then 5-hydroxymethylfurfural (5-HMF), the latter a potential, bio-derived platform chemical feedstock, has been explored over a family of bifunctional sulfated zirconia catalysts possessing tuneable acid-base properties. Characterisation by acid-base titration, XPS, XRD and Raman reveal that submonolayer SO4 coverages offer the ideal balance of basic and Lewis-Brønsted acid sites required to respectively isomerise glucose to fructose, and subsequently dehydrate fructose to 5-HMF. A constant acid site normalised turnover frequency is observed for fructose dehydration to 5-HMF, confirming a common Brønsted acid site is responsible for this transformation. This journal is © The Royal Society of Chemistry.
Resumo:
The wettability of the (001), (100), and (011) crystallographic facets of macroscopic aspirin crystals has been experimentally investigated using a sessile drop contact angle (θ) method. θ for a nonpolar liquid was very similar for all three facets, though significant θ differences were observed for three polar probe liquids. The observed hydrophobicity of the (001) and (100) facets is ascribed to a reduced hydrogen bonding potential at these surfaces, whilst the observed hydrophilicity of facet (011) may be attributed to presence of surface carboxylic functionalities as confirmed by X-ray photoelectron spectroscopy (XPS). The dispersive component of the surface free energy (γ) was similar for all three facets (35 ± 2 mJ/m). The total surface energy, γs varied between 46 and 60 mJ/m due to significant variations in the polar/acid-base components of γ for all facets. Surface polarity as determined by γ measurements and XPS data were in good agreement, linking the variations in wettability to the concentration of oxygen containing surface functional groups. In conclusion, the wettability and the surface energy of a crystalline organic solid, such as aspirin, was found to be anisotropic and facet dependant, and in this case, related to the presence of surface carboxylic functionalities. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Resumo:
The grafting and sulfation of zirconia conformal monolayers on SBA-15 to create mesoporous catalysts of tunable solid acid/base character is reported. Conformal zirconia and sulfated zirconia (SZ) materials exhibit both Brönsted and Lewis acidity, with the Brönsted/Lewis acid ratio increasing with film thickness and sulfate content. Grafted zirconia films also exhibit amphoteric character, whose Brönsted/Lewis acid site ratio increases with sulfate loading at the expense of base sites. Bilayer ZrO2/SBA-15 affords an ordered mesoporous material with a high acid site loading upon sulfation and excellent hydrothermal stability. Catalytic performance of SZ/SBA-15 was explored in the aqueous phase conversion of glucose to 5-HMF, delivering a 3-fold enhancement in 5-HMF productivity over nonporous SZ counterparts. The coexistence of accessible solid basic/Lewis acid and Brönsted acid sites in grafted SZ/SBA-15 promotes the respective isomerization of glucose to fructose and dehydration of reactively formed fructose to the desired 5-HMF platform chemical.
Resumo:
The quest for sustainable resources to meet the demands of a rapidly rising global population while mitigating the risks of rising CO2 emissions and associated climate change, represents a grand challenge for humanity. Biomass offers the most readily implemented and low-cost solution for sustainable transportation fuels, and the only non-petroleum route to organic molecules for the manufacture of bulk, fine and speciality chemicals and polymers. To be considered truly sustainable, biomass must be derived fromresources which do not compete with agricultural land use for food production, or compromise the environment (e.g. via deforestation). Potential feedstocks include waste lignocellulosic or oil-based materials derived from plant or aquatic sources, with the so-called biorefinery concept offering the co-production of biofuels, platform chemicals and energy; analogous to today's petroleum refineries which deliver both high-volume/low-value (e.g. fuels and commodity chemicals) and lowvolume/ high-value (e.g. fine/speciality chemicals) products, thereby maximizing biomass valorization. This article addresses the challenges to catalytic biomass processing and highlights recent successes in the rational design of heterogeneous catalysts facilitated by advances in nanotechnology and the synthesis of templated porous materials, as well as the use of tailored catalyst surfaces to generate bifunctional solid acid/base materials or tune hydrophobicity.
Resumo:
Dwindling fossil fuel reserves, and growing concerns over CO2 emissions and associated climate change, are driving the quest for renewable feedstocks to provide alternative, sustainable fuel sources. Catalysis has a rich history of facilitating energy efficient, selective molecular transformations, and in a post-petroleum era will play a pivotal role in overcoming the scientific and engineering barriers to economically viable, and sustainable, biofuels derived from renewable resources. The production of second generation biofuels, derived from biomass sourced from inedible crop components, e.g. agricultural or forestry waste, or alternative non-food crops such as Switchgrass or Jatropha Curcas that require minimal cultivation, necessitate new heterogeneous catalysts and processes to transform these polar and viscous feedstocks [1]. Here we show how advances in the rational design of nanoporous solid acids and bases, and their utilisation in novel continuous reactors, can deliver superior performance in the energy-efficient esterification and transesterification of bio-oil components into biodiesel [2-4]. Notes: [1] K. Wilson, A.F. Lee, Cat. Sci. Tech. 2012 ,2, 884. [2] J. Dhainaut, J.-P. Dacquin, A. F. Lee, K. Wilson, Green Chem. 2010 , 12, 296. [3] C. Pirez, J.-M. Caderon, J.-P. Dacquin, A.F. Lee, K. Wilson, ACS Catal. 2012 , 2, 1607. [4] J.J. Woodford, J.-P. Dacquin, K. Wilson, A.F. Lee, Energy Environ. Sci. 2012 , 5, 6145.
Resumo:
Dwindling oil reserves and growing concerns over CO2 emissions and associated climate change are driving the utilisation of renewable feedstocks as alternative, sustainable fuel sources. While rising oil prices are improving the commercial feasibility of biodiesel production, many current processes still employ homogeneous acid and/or base catalysts to transform plant or algae oil into the fatty acid methyl ester (FAME) components of biodiesel. Fuel purification requires energy intensive aqueous quench and neutralization steps, thus the rational design of new high activity catalysts is required to deliver biodiesel as a major player in the 21st century sustainable energy portfolio. Advances in the development of heterogeneous catalysts for biodiesel synthesis require catalysts with pore architectures designed to improve the accessibility of bulky viscous reactants typical of plant oils. Here we discuss how improvements to active site accessibility and catalyst activity in transesterification or esterification reactions can be achieved either by designing hierarchical pore networks or by pore expansion and use of interconnected pore architectures.
Resumo:
This chapter provides a general overview of recent studies on catalytic conversion of fructose, glucose, and cellulose to platform chemicals over porous solid acid and base catalysts, including zeolites, ion-exchange resins, heteropoly acids, as well as structured carbon, silica, and metal oxide materials. Attention is focused on the dehydration of glucose and fructose to HMF, isomerization of glucose to fructose, hydrolysis of cellulose to sugar, and glycosidation of cellulose to alkyl glucosides. The correlation of porous structure, surface properties, and the strength or types of acid or base with the catalyst activity in these reactions is discussed in detail in this chapter.
Resumo:
The base free oxidation of glycerol with molecular oxygen in water using bimetallic Au-Pt catalysts on three different acidic zeolite supports (H-mordenite, H-β and H-USY) was explored in a batch setup. At temperatures between 140 and 180 °C, lactic acid formation was significant and highest selectivity (60 % lactic acid at 80 % glycerol conversion) was obtained using Au-Pt/USY-600 (180 °C). A selectivity switch to glyceric acid (GLYA) was observed when the reactions were performed at 100 °C. Highest conversion and selectivity towards GLYA were obtained with Au-Pt/H-β as the catalyst (68 % selectivity at 68 % conversion).
Resumo:
This work investigated the purification of phosphoric acid using a suitable organic solvent, followed by re-extraction of the acid from the solvent using water. The work consisted of practical batch and continuous studies and the economics and design of a full scale plant, based on the experimental data. A comprehensive literature survey on the purification of wet process phosphoric acid by organic solvents is presented and the literature describing the design and operation of mixer-settlers has also been reviewed. In batch studies, the equilibrium and distribution curves for the systems water-phosphoric acid-solvent for Benzaldehyde, Cyclohexanol and Methylisobutylketone (MIBK) were determined together with hydrodynamic characteristics for both pure and impure systems. The settling time increased with acid concentration, but power input had no effect. Drop size was found to reduce with acid concentration and power input. For the continuous studies a novel horizontal mixer~settler cascade was designed, constructed and operated using pure and impure acid with MIBK as the solvent. The cascade incorporates three air turbine agitated, cylindrical 900 ml mixers, and three cylindrical 200 ml settlers with air-lift solvent interstage transfer. Mean drop size in the fully baffled mixer was correlated. Drop size distributions were log-normal and size decreased with acid concentration and power input and increased with dispersed phase hold-up. Phase inversion studies showed that the width of the ambivalent region depended upon rotor speed, hold-up and acid concentration. Settler characteristics were investigated by measuring wedge length. Distribution coefficients of impurities and acid were also investigated. The following optimum extraction conditions were found: initial acid concentration 63%, phase ratio of solvent to acid 1:1 (v/v), impeller speed recommended 900 r.p.m. In the washing step the maximum phase ratio of solvent to water was 8:1 (v/v). Work on phosphoric acid concentration involved constructing distillation equipment consisting of a 10& spherical still. A 100 T/d scale detailed process design including capital cost, operating cost and profitability was also completed. A profit model for phosphoric acid extraction was developed and maximised. Recommendations are made for both the application of the results to a practical design and for extensions of the study.
Resumo:
A study of vapour-liquid equilibria is presented together with current developments. The theory of vapour-liquid equilibria is discussed. Both experimental and prediction methods for obtaining vapour-liquid equilibria data are critically reviewed. The development of a new family of equilibrium stills to measure experimental VLE data from sub-atmosphere to 35 bar pressure is described. Existing experimental techniques are reviewed, to highlight the needs for these new apparati and their major attributes. Details are provided of how apparatus may be further improved and how computer control may be implemented. To provide a rigorous test of the apparatus the stills have been commissioned using acetic acid-water mixture at one atmosphere pressure. A Barker-type consistency test computer program, which allows for association in both phases has been applied to the data generated and clearly shows that the stills produce data of a very high quality. Two high quality data sets, for the mixture acetone-chloroform, have been generated at one atmosphere and 64.3oC. These data are used to investigate the ability of the new novel technique, based on molecular parameters, to predict VLE data for highly polar mixtures. Eight, vapour-liquid equilibrium data sets have been produced for the cyclohexane-ethanol mixture at one atmosphere, 2, 4, 6, 8 and 11 bar, 90.9oC and 132.8oC. These data sets have been tested for thermodynamic consistency using a Barker-type fitting package and shown to be of high quality. The data have been used to investigate the dependence of UNIQUAC parameters with temperature. The data have in addition been used to compare directly the performance of the predictive methods - Original UNIFAC, a modified version of UNIFAC, and the new novel technique, based on molecular parameters developed from generalised London's potential (GLP) theory.
Resumo:
This thesis is primarily concerned with the synthesis and polymerization of 5-methyl-1;3, 2-dioxathiolan-4-one-2-oxide (lactic acid anhydrosulphite (LAAS)) using anionic initiators under various conditions. Poly(lactic acid) is a biodegradable polymer which finds many uses in biomedical applications such as drug-delivery and wound-support systems. For such applications it is desirable to produce polymers having predictable molecular weight distributions and crystallinity, The use of anionic initiators offers a potential route to the creation of living polymers. The synthesis of LAAS was achieved by means of an established route though the procedure was modified to some extent and a new method of purification of the monomer using copper oxides was introduced, Chromatographic purification methods were also examined but found to be ineffective. An unusual impurity was discovered in some syntheses and this was identified by means of 1H and 13C NMR, elemental analysis and GC-MS. Since poly-α-esters having hydroxyl-bearing substituents might be expected to have high equilibrium water contents and hence low surface tension characteristics which might aid bio-compatibility, synthesis of gluconic acid anhydrosulphite was also attempted and the product characterised by 1H and 13C NMR. The kinetics of the decomposition of lactic acid anhydrosulphite by lithium tert-butoxide in nitrobenzene has been examined by means of gas evolution measurements. The kinetics of the reaction with potassium tert-butoxide (and also sec-butyl lithium) in tetrahydrofuran has been studied using calorimetric techniques. LAAS was block co-polymerized with styrene and also with 1,3-butadiene in tetrahydrofuran (in the latter case a statistical co-polymer was also produced).
Resumo:
MOTIVATION: There is much interest in reducing the complexity inherent in the representation of the 20 standard amino acids within bioinformatics algorithms by developing a so-called reduced alphabet. Although there is no universally applicable residue grouping, there are numerous physiochemical criteria upon which one can base groupings. Local descriptors are a form of alignment-free analysis, the efficiency of which is dependent upon the correct selection of amino acid groupings. RESULTS: Within the context of G-protein coupled receptor (GPCR) classification, an optimization algorithm was developed, which was able to identify the most efficient grouping when used to generate local descriptors. The algorithm was inspired by the relatively new computational intelligence paradigm of artificial immune systems. A number of amino acid groupings produced by this algorithm were evaluated with respect to their ability to generate local descriptors capable of providing an accurate classification algorithm for GPCRs.
Resumo:
Nanoparticulate gold has emerged as a promising catalyst for diverse mild and efficient selective aerobic oxidations. However, the mechanism of such atom-economical transformations, and synergy with functional supports, remains poorly understood. Alkali-free Mg-Al hydrotalcites are excellent solid base catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA), but only in concert with high concentrations of metallic gold nanoparticles. In the absence of soluble base, competitive adsorption between strongly-bound HMF and reactively-formed oxidation intermediates site-blocks gold. Aqueous NaOH dramatically promotes solution phase HMF activation, liberating free gold sites able to activate the alcohol function within the metastable 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) reactive intermediate. Synergistic effects between moderate strength base sites within alkali-free hydrotalcites and high gold surface concentrations can afford highly selective and entirely heterogeneous catalysts for aqueous phase aldehyde and alcohol cascade oxidations pertinent to biomass transformation.