3 resultados para acid volatile sulfide
em Aston University Research Archive
Resumo:
This research was carried for an EC supported project that aimed to produce ethyl levulinate as a diesel miscible biofuel from biomass by acid hydrolysis. The objective of this research was to explore thermal conversion technologies to recover further diesel miscible biofuels and/or other valuable products from the remaining solid acid hydrolysis residues (AHR). AHR consists of mainly lignin and humins and contains up to 80% of the original energy in the biomass. Fast pyrolysis and pyrolytic gasification of this low volatile content AHR was unsuccessful. However, successful air gasification of AHR gave a low heating value gas for use in engines for power or heat with the aim of producing all the utility requirements in any commercial implementation of the ethyl levulinate production process. In addition, successful fast pyrolysis of the original biomass gave organic liquid yields of up to 63.9 wt.% (dry feed basis) comparable to results achieved using a standard hardwood. The fast pyrolysis liquid can be used as a fuel or upgraded to biofuels. A novel molybdenum carbide catalyst was tested in fast pyrolysis to explore the potential for upgrading. Although there was no deoxygenation, some bio-oil properties were improved including viscosity, pH and homogeneity through decreasing sugars and increasing furanics and phenolics. AHR gasification was explored in a batch gasifier with a comparison with the original biomass. Refractory and low volatile content AHR gave relatively low gas yields (74.21 wt.%), low tar yields (5.27 wt.%) and high solid yields (20.52 wt.%). Air gasification gave gas heating values of around 5MJ/NM3, which is a typical value, but limitations of the equipment available restricted the extent of process and product analysis. In order to improve robustness of AHR powder for screw feeding into gasifiers, a new densification technique was developed based on mixing powder with bio-oil and curing the mixture at 150°C to polymerise the bio-oil.
Resumo:
The research presented in this thesis was developed as part of DIBANET, an EC funded project aiming to develop an energetically self-sustainable process for the production of diesel miscible biofuels (i.e. ethyl levulinate) via acid hydrolysis of selected biomass feedstocks. Three thermal conversion technologies, pyrolysis, gasification and combustion, were evaluated in the present work with the aim of recovering the energy stored in the acid hydrolysis solid residue (AHR). Mainly consisting of lignin and humins, the AHR can contain up to 80% of the energy in the original feedstock. Pyrolysis of AHR proved unsatisfactory, so attention focussed on gasification and combustion with the aim of producing heat and/or power to supply the energy demanded by the ethyl levulinate production process. A thermal processing rig consisting on a Laminar Entrained Flow Reactor (LEFR) equipped with solid and liquid collection and online gas analysis systems was designed and built to explore pyrolysis, gasification and air-blown combustion of AHR. Maximum liquid yield for pyrolysis of AHR was 30wt% with volatile conversion of 80%. Gas yield for AHR gasification was 78wt%, with 8wt% tar yields and conversion of volatiles close to 100%. 90wt% of the AHR was transformed into gas by combustion, with volatile conversions above 90%. 5volO2%-95vol%N2 gasification resulted in a nitrogen diluted, low heating value gas (2MJ/m3). Steam and oxygen-blown gasification of AHR were additionally investigated in a batch gasifier at KTH in Sweden. Steam promoted the formation of hydrogen (25vol%) and methane (14vol%) improving the gas heating value to 10MJ/m3, below the typical for steam gasification due to equipment limitations. Arrhenius kinetic parameters were calculated using data collected with the LEFR to provide reaction rate information for process design and optimisation. Activation energy (EA) and pre-exponential factor (ko in s-1) for pyrolysis (EA=80kJ/mol, lnko=14), gasification (EA=69kJ/mol, lnko=13) and combustion (EA=42kJ/mol, lnko=8) were calculated after linearly fitting the data using the random pore model. Kinetic parameters for pyrolysis and combustion were also determined by dynamic thermogravimetric analysis (TGA), including studies of the original biomass feedstocks for comparison. Results obtained by differential and integral isoconversional methods for activation energy determination were compared. Activation energy calculated by the Vyazovkin method was 103-204kJ/mol for pyrolysis of untreated feedstocks and 185-387kJ/mol for AHRs. Combustion activation energy was 138-163kJ/mol for biomass and 119-158 for AHRs. The non-linear least squares method was used to determine reaction model and pre-exponential factor. Pyrolysis and combustion of biomass were best modelled by a combination of third order reaction and 3 dimensional diffusion models, while AHR decomposed following the third order reaction for pyrolysis and the 3 dimensional diffusion for combustion.
Resumo:
Introduction: Resveratrol (RVT) found in red wine protects against erectile dysfunction and relaxes penile tissue (corpus cavernosum) via a nitric oxide (NO) independent pathway. However, the mechanism remains to be elucidated. Hydrogen sulfide (H2S) is a potent vasodilator and neuromodulator generated in corpus cavernosum. Aims: We investigated whether RVT caused the relaxation of mice corpus cavernosum (MCC) through H2S. Methods: H2S formation is measured by methylene blue assay and vascular reactivity experiments have been performed by DMT strip myograph in CD1 MCC strips. Main Outcome Measures: Endothelial NO synthase (eNOS) inhibitor Nω-Nitro-L-arginine (L-NNA, 0.1mM) or H2S inhibitor aminooxyacetic acid (AOAA, 2mM) which inhibits both cystathionine-β-synthase (CBS) and cystathionine-gamma-lyase (CSE) enzyme or combination of AOAA with PAG (CSE inhibitor) has been used in the presence/absence of RVT (0.1mM, 30min) to elucidate the role of NO or H2S pathways on the effects of RVT in MCC. Concentration-dependent relaxations to RVT, L-cysteine, sodium hydrogen sulfide (NaHS) and acetylcholine (ACh) were studied. Results: Exposure of murine corpus cavernosum to RVT increased both basal and L-cysteine-stimulated H2S formation. Both of these effects were reversed by AOAA but not by L-NNA. RVT caused concentration-dependent relaxation of MCC and that RVT-induced relaxation was significantly inhibited by AOAA or AOAA+PAG but not by L-NNA. L-cysteine caused concentration-dependent relaxations, which are inhibited by AOAA or AOAA+PAG significantly. Incubation of MCC with RVT significantly increased L-cysteine-induced relaxation, and this effect was inhibited by AOAA+PAG. However, RVT did not alter the effect of exogenous H2S (NaHS) or ACh-induced relaxations. Conclusions: These results demonstrate that RVT-induced relaxation is at least partly dependent on H2S formation and acts independent of eNOS pathway. In phosphodiesterase 5 inhibitor (PDE-5i) nonresponder population, combination therapy with RVT may reverse erectile dysfunction via stimulating endogenous H2S formation. Yetik-Anacak G, Dereli MV, Sevin G, Ozzayim O, Erac Y, and Ahmed A. Resveratrol stimulates hydrogen sulfide (H2S) formation to relax murine corpus cavernosum.