9 resultados para ZnSxTe1-x mixed crystals
em Aston University Research Archive
Resumo:
The Norwegian physicist Lars Vegard studied with William H. Bragg in Leeds and then with Wilhelm Wien in Würzburg. There, in 1912, he heard a lecture by Max Laue describing the first X-ray diffraction experiments and took accurate notes which he promptly sent to Bragg. Although now remembered mainly for his work on the physics of the aurora borealis, Vegard also did important pioneering work in three areas of crystallography. He derived chemical insight from a series of related crystal structures that he determined, Vegard's Law relates the unit-cell dimensions of mixed crystals to those of the pure components, and he determined some of the first crystal structures of gases solidified at cryogenic temperatures. © 2013 Taylor and Francis.
Resumo:
We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H2NC(CH3)3-n(CH2OH)n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family (n=0, 1, 2), but significantly contrasting structural properties for the member with n=3. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Illustrative extracts from the writings of Paul P. Ewald and of Max von Laue are presented. The latter in turn contains extensive text contributions from William Lawrence Bragg. These selections we have chosen so as to indicate the nature of the discovery of X-ray diffraction from crystals (experiments undertaken by Friedrich, Knipping and von Laue) and its early and prompt application in crystal structure analyses (by William Henry Bragg and William Lawrence Bragg). The platform for these discoveries was provided by a macroscopic physics problem dealt with by Ewald in his doctoral thesis with Arnold Sommerfeld in the Munich Physics Department, which is also where von Laue was based. W.L. Bragg was a student in Cambridge who used Trinity College Cambridge as his address on his early papers; experimental work was done by him in the Cavendish Laboratory, Cambridge, and also with his father, W.H. Bragg, in the Leeds University Physics Department. Of further historical interest is the award of an Honorary DSc (Doctor of Science) degree in 1936 to Max von Laue by the University of Manchester, UK, while William Lawrence Bragg was Langworthy Professor of Physics there. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
The aerobic selective oxidation (selox) of alcohols represents an environmentally benign and atom efficient chemical valorisation route to commercially important allylic aldehydes, such as crotonaldehyde and cinnamaldehyde, which find application in pesticides, fragrances and food additives. Palladium nanoparticles are highly active and selective heterogeneous catalysts for such oxidative dehydrogenations, permitting the use of air (or dioxygen) as a green oxidant in place of stoichiometric chromate permanganate saltsor H2O2. Here we discuss how time-resolved, in-situ X-ray spectroscopies (XAS and XPS) reveal dynamic restructuring of dispersed Pd nanoparticles and Pd single-crystals in response to changing reaction environments, and thereby identify surface PdO as the active species responsible for palladium catalysed crotyl alcohol selox (Figure 1); on-stream reduction to palladium metal under oxygen-poor regimes thus appears the primary cause of catalyst deactivation. This insight has guided the subsequent application of surfactant-templating and inorganic nanocrystal methodologies to optimize the density of desired active PdO sites for the selective oxidation of natural products such as sesquiterpenoids.
Resumo:
The wettability of the (001), (100), and (011) crystallographic facets of macroscopic aspirin crystals has been experimentally investigated using a sessile drop contact angle (θ) method. θ for a nonpolar liquid was very similar for all three facets, though significant θ differences were observed for three polar probe liquids. The observed hydrophobicity of the (001) and (100) facets is ascribed to a reduced hydrogen bonding potential at these surfaces, whilst the observed hydrophilicity of facet (011) may be attributed to presence of surface carboxylic functionalities as confirmed by X-ray photoelectron spectroscopy (XPS). The dispersive component of the surface free energy (γ) was similar for all three facets (35 ± 2 mJ/m). The total surface energy, γs varied between 46 and 60 mJ/m due to significant variations in the polar/acid-base components of γ for all facets. Surface polarity as determined by γ measurements and XPS data were in good agreement, linking the variations in wettability to the concentration of oxygen containing surface functional groups. In conclusion, the wettability and the surface energy of a crystalline organic solid, such as aspirin, was found to be anisotropic and facet dependant, and in this case, related to the presence of surface carboxylic functionalities. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Resumo:
Advancing (θA) and receding (θR) contact angles were measured with several probe liquids on the external facets (201), (001), (011), and (110) of macroscopic form I paracetamol crystals as well as the cleaved (internal) facet (010). For the external crystal facets, dispersive surface energies γd calculated from the contact angles were found to be similar (34 ± 1 mJ/m2), while the polar components varied significantly. Cleaving the crystals exposed a more apolar (010) surface with very different surface properties, including γd = 45 ± 1 mJ/m2. The relative surface polarity (γp/γ) of the facets in decreasing order was (001) > (011) > (201) > (110) > (010), which agreed with the fraction of exposed polar hydroxyl groups as determined from C and O 1s X-ray photoelectron spectroscopy (XPS) spectra, and could be correlated with the number of non-hydrogen-bonded hydroxyl groups per unit area present for each crystal facet, based on the known crystal structures. In conclusion, all facets of form I paracetamol crystals examined exhibited anisotropic wetting behavior and surface energetics that correlated to the presence of surface hydroxyl groups. © 2006 American Chemical Society.
Resumo:
As the pressure continues to grow on Diamond and the world's synchrotrons for higher throughput of diffraction experiments, new and novel techniques are required for presenting micron dimension crystals to the X ray beam. Currently this task is both labour intensive and primarily a serial process. Diffraction measurements typically take milliseconds but sample preparation and presentation can reduce throughput down to 4 measurements an hour. With beamline waiting times as long as two years it is of key importance for researchers to capitalize on available beam time, generating as much data as possible. Other approaches detailed in the literature [1] [2] [3] are very much skewed towards automating, with robotics, the actions of a human protocols. The work detailed here is the development and discussion of a bottom up approach relying on SSAW self assembly, including material selection, microfluidic integration and tuning of the acoustic cavity to order the protein crystals.
Resumo:
As the pressure continues to grow on Diamond and the world's synchrotrons for higher throughput of diffraction experiments, new and novel techniques are required for presenting micron dimension crystals to the X ray beam. Currently this task is both labour intensive and primarily a serial process. Diffraction measurements typically take milliseconds but sample preparation and presentation can reduce throughput down to 4 measurements an hour. With beamline waiting times as long as two years it is of key importance for researchers to capitalize on available beam time, generating as much data as possible. Other approaches detailed in the literature [1] [2] [3] are very much skewed towards automating, with robotics, the actions of a human protocols. The work detailed here is the development and discussion of a bottom up approach relying on SSAW self assembly, including material selection, microfluidic integration and tuning of the acoustic cavity to order the protein crystals.