8 resultados para Zinc Oxide-Eugenol Cement

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation into the mechanism by which ethylene thiourea (ETU) cross-links polychloroprene (CR) in combination with zinc oxide (ZnO) was undertaken. This was achieved through an examination of the mechanisms of crosslinking CR with ETU and ZnO separately and in unison. Spectroscopic and physical characterization techniques were employed to probe the cross-linking mechanisms of CRusing other standard rubber accelerators and model compounds with analogous structures and functionalities to ETU. These investigations have resulted in the proposal of a new mechanism by which ETU and ZnO can synergistically cross-link CR, in addition to providing new evidence to support concomitant mechanisms already published for cross-linking CR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizome of cassava plants (Manihot esculenta Crantz) was catalytically pyrolysed at 500 °C using analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) method in order to investigate the relative effect of various catalysts on pyrolysis products. Selected catalysts expected to affect bio-oil properties were used in this study. These include zeolites and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F type), metal oxides (zinc oxide, zirconium (IV) oxide, cerium (IV) oxide and copper chromite) catalysts, proprietary commercial catalysts (Criterion-534 and alumina-stabilised ceria-MI-575) and natural catalysts (slate, char and ashes derived from char and biomass). The pyrolysis product distributions were monitored using models in principal components analysis (PCA) technique. The results showed that the zeolites, proprietary commercial catalysts, copper chromite and biomass-derived ash were selective to the reduction of most oxygenated lignin derivatives. The use of ZSM-5, Criterion-534 and Al-MSU-F catalysts enhanced the formation of aromatic hydrocarbons and phenols. No single catalyst was found to selectively reduce all carbonyl products. Instead, most of the carbonyl compounds containing hydroxyl group were reduced by zeolite and related materials, proprietary catalysts and copper chromite. The PCA model for carboxylic acids showed that zeolite ZSM-5 and Al-MSU-F tend to produce significant amounts of acetic and formic acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of reliable, high powered plasma generators has resulted in many plasma processes being proposed as alternatives to existing pyrometallurgical technologies. This work evaluates the advantages and disadvantages of plasma systems by reviewing plasma generators, their integration with reactors and the process economics. Many plasma systems were shown to be technically and economically superior to existing technologies, but some of the plasma system advantages quoted in the literature were found to be impractical because of other system constraints. Process applications were limited by the power inputs available from plasma generators compared to AC electric furnaces. A series of trials were conducted where chromite and steelplant baghouse dusts were smelted in the Tetronics' 2.0 MW transferred arc/open bath reactor to confirm the operating characteristics of the plasma system and its economics. Chromite smelting was technical superior to submerged arc furnace technology, but the economics were unfavourable because of the limited power available from the water-cooled plasma torch and the high electrical energy consumption. A DC graphite electrode plasma furnace using preheated and prereduced chromite concentrates will compete economically with the submerged arc furnace. Ni, Cr and Mo were economically recovered from high alloy content steelplant dusts for recycling. Five Electric Arc Furnace dusts were smelted to produce a non-toxic residue and recover the contained zinc to an enriched zinc oxide product for recycling. It should be possible to condense the zinc vapour directly in a zinc splash condenser to increase the value of the product. Because of the limited power available from plasma generators, plasma processes will be most suitable for treating high and medium value materials such as Au, Pt, Mo, Ni, Ti, V, Cr etc at small production rates, heating metals in tundishes and ladles and remelting superalloy scrap. The treatment of environmentally hazardous waste materials is a particularly interesting application because of the additional financial incentives. Non-transferred arc plasma generators will be used for air and gas preheating in blast furnaces to reduce metallurgical coke consumptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quest for renewable energy sources has led to growing attention in the research of organic photovoltaics (OPVs), as a promising alternative to fossil fuels, since these devices have low manufacturing costs and attractive end-user qualities, such as ease of installation and maintenance. Wide application of OPVs is majorly limited by the devices lifetime. With the development of new encapsulation materials, some degradation factors, such as water and oxygen ingress, can almost be excluded, whereas the thermal degradation of the devices remains a major issue. Two aspects have to be addressed to solve the problem of thermal instability: bulk effects in the photoactive layer and interfacial effects at the photoactive layer/charge-transporting layers. In this work, the interface between photoactive layer and electron-transporting zinc oxide (ZnO) in devices with inverted architecture was engineered by introducing polymeric interlayers, based on zinc-binding ligands, such as 3,4-dihydroxybenzene and 8-hydroxyquinoline. Also, a cross-linkable layer of poly(3,4-dimethoxystyrene) and its fullerene derivative were studied. At first, controlled reversible addition-fragmentation chain transfer (RAFT) polymerisation was employed to achieve well-defined polymers in a range of molar masses, all bearing a chain-end functionality for further modifications. Resulting polymers have been fully characterised, including their thermal and optical properties, and introduced as interlayers to study their effect on the initial device performance and thermal stability. Poly(3,4-dihydroxystyrene) and its fullerene derivative were found unsuitable for application in devices as they increased the work function of ZnO and created a barrier for electron extraction. On the other hand, their parental polymer, poly(3,4-dimethoxystyrene), and its fullerene derivative, upon cross-linking, resulted in enhanced efficiency and stability of devices, if compared to control. Polymers based on 8-hydroxyquinoline ligand had a negative effect on the initial stability of the devices, but increased the lifetime of the cells under accelerated thermal stress. Comprehensive studies of the key mechanisms, determining efficiency, such as charge generation and extraction, were performed by using time-resolved electrical and spectroscopic techniques, in order to understand in detail the effect of the interlayers on the device performance. Obtained results allow deeper insight into mechanisms of degradation that limit the lifetime of devices and prompt the design of better materials for the interface stabilisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical ZnO “rod like” architecture was successfully synthesized via reverse micellar route and characterized by various techniques. The FESEM studies show controlled decomposition of zinc oxalate into ZnO “rod like” architecture at 500 °C with slow heat rate at 1°/min. Interestingly, improved photocatalytic activity was observed for the degradation of Rhodamine B, due to the self assembly of hexagonal nanoparticles of zinc oxide forming hierarchical ZnO “rod like” architecture which can greatly enhance the light utilization rate due to its special architecture and enlarge the specific surface area, providing more reaction sites and promoting mass transfer. More importantly, the reusability studies of this architecture were most economical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Es wurde eine Untersuchung zum Mechanismus der Vernetzung von Polychloropren durch Ethylenthioharnstoff in Kombination mit Zinkoxid durchgeführt. Dies wurde mit einer Überprüfung der Vernetzungsmechanismen von Polychloroprenkautschuk mit Ethylenthioharnstoff und Zinkoxid getrennt bzw. gemeinsam erreicht. Dabei kamen spektroskopische und physikalische Charakterisierungsverfahren zum Einsatz, um die Vernetzungsmechanismen von  CR mit anderen Standardvulkanisationsbeschleunigern und Modellverbindungen – mit ETU-analogen Strukturen und Funktionalitäten – zu erforschen. Aus den Untersuchungen resultierte der Vorschlag zu einem neuen Mechanismus, nach dem ETU und ZnO Polychloropren synergistisch vernetzen. Zusätzlich wurden neue Hinweise gewonnen, die gleichzeitig bestehende Mechanismen, die schon zur Vernetzung von Polychloropren veröffentlicht wurden, untermauern. An investigation into the mechanism by which ethylene thiourea crosslinks polychloroprene in combination with zinc oxide was undertaken. This was achieved through an examination of the mechanisms of crosslinking polychloroprene rubber with ETU and ZnO separately and in unison. Spectroscopic and physical characterisation techniques were employed to probe the crosslinking mechanisms of CR using other standard rubber accelerators and model compounds with analogous structures and functionalities to ETU. These investigations have resulted in the proposal of a new mechanism by which ETU and ZnO can synergistically crosslink polychloroprene, in addition to providing new evidence to support concomitant mechanisms already published for crosslinking polychloroprene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation has been undertaken to determine the major factors influencing the corrosion resistance of duplex-zinc coatings on steel substrates.Premature failure of these systems has been attributed to the presence of defects such as craters and pinholes in the polymer film and debonding of the polymer film from the zinc substrate.Defects found on commercially produced samples have been carefully characterised using metallographic and scanning electron microscopy techniques. The influence of zinc substrate surface roughness, polymer film thickness and degassing of conversion coatings films on the incidence of defects has been determined.Pretreatments of the chromate, chromate-phosphate, non chromate, and alkali-oxide types were applied and the conversion coatings produced characterised with respect to their nature and composition. The effect of degassing on the properties of the films was also investigated. Electrochemical investigations were carried out to determine the effect of the presence of the eta or zeta phase as the outermost layer of the galvanized coating.Flow characteristics of polyester on zinc electroplated hot-dip continuous and batch galvanized and zinc sprayed samples were investigated using hot-stage microscopy. The effects of different pretreatments and degassing after conversion coating formation on flow characteristics were determined.Duplex coatings were subjected to the acetic acid salt spray test. The effect on adhesion was determined using an indentation debonding test and the results compared with those obtained using cross-cut/peel and pull-off tests. The locus of failure was determined using scanning electron microscopy and X-ray photoelectron spectroscopy techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isomerisation of α-pinene oxide to campholenic aldehyde was performed by immobilising zinc triflate based catalysts on the surface of a spinning disc reactor (SDR). Two types of catalyst have been studied and the influence of operating parameters such as rotational speed, feed flow rate and reaction temperature on conversion and selectivity towards campholenic aldehyde has been investigated in considerable detail. The findings of the study suggest that immobilising the catalyst on the reactor surface and performing the reaction in continuous mode has potential for achieving benefits of Green Chemical Technology (GCT).