2 resultados para Zeeman splitting
em Aston University Research Archive
Resumo:
Purpose: Evaluating the impact of splitting toric power on patient tolerance to misorientation such as with intraocular lens rotation. Setting: University vision clinic. Methods: Healthy, non astigmats had +1.50D astigmatism induced with spectacle lenses at 90°, 135°, 180° and +3.00D at 90°. Two correcting cylindrical lenses of the opposite sign and half the power each were subsequently added to the trial frame misaligned by 0°, 5° or 10° in a random order and misorientated from the initial axis in a clockwise direction by up to 15° in 5° steps. A second group of adapted astigmats with between 1.00 and 3.00DC had their astigmatism corrected with two toric spectacle lenses of half the power separated by 0°, 5° or 10° and misorientated from the initial axis in both directions by up to 15° in 5° steps. Distance, high contrast visual acuity was measured using a computerised test chart at each lens misalignment and misorientation. Results: Misorientation of the split toric lenses caused a statistically significant drop in visual acuity (F= 70.341; p< 0.001). Comparatively better acuities were observed around 180°, as anticipated (F= 3.775; p= 0.035). Misaligning the split toric power produced no benefit in visual acuity retention with axis misorientation when subjects had astigmatism induced with a low (F= 2.190, p= 0.129) or high cylinder (F= 0.491, p= 0.617) or in the adapted astigmats (F= 0.120, p= 0.887). Conclusion: Misalignment of toric lens power split across the front and back lens surfaces had no beneficial effect on distance visual acuity, but also no negative effect. © 2013 British Contact Lens Association.
Resumo:
An application of long-period fiber gratings (fabricated in standard fiber) as bend sensors is reported. A simple model, taking account of the strain and compression in the fiber cladding, is used to calculate the splitting of the cladding modes and is found to be in excellent agreement with the experimental results. Over 80 nm resonance splitting was observed under a 5.6 m-1 bend curvature giving a bend sensitivity of 14.5 nm/(m-1), the best obtained data so far. © 2001 Elsevier Science B.V.