16 resultados para ZETA POTENTIAL

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper, we have investigated the application of liposome-entrapped DNA and their cationic lipid composition on such potency after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into liposomes composed of 16 μmol egg phosphatidylcholine (PC), 8 μmoles dioleoyl phosphatidylethanolamine (DOPE) or cholesterol (Chol) and either the cationic lipid 1,2-diodeoyl-3-(trimethylammonium) propane (DOTAP) or cholesteryl 3-N-(dimethyl amino ethyl) carbamate (DC-Chol). This method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded incorporation values of 90-94% of the DNA used. Mixing or rehydration of preformed cationic liposomes with 100 μg plasmid DNA also led to similarly high complexation values (92-94%). In an attempt to establish differences in the nature of DNA association with these various liposome preparations their physico-chemical characteristics were investigated. Studies on vesicle size, zeta potential and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, formulation of liposomal DNA by the dehydration-rehydration generated submicron size liposomes incorporating most of the DNA in a manner that prevents DNA displacement through anion competition. The bilayer composition of these dehydration-rehydration vesicles (DRV(DNA)) can also further influence these physicochemical characteristics with the presence of DOPE within the liposome bilayer resulting in a reduced vesicle zeta potential. Subcutaneous liposome-mediated DNA immunisation employing two DRV(DNA) formulations as well as naked DNA revealed that humoural responses (immunoglobulin total IgG, and subclasses IgG1 and 1gG2a) engendered by the plasmid encoded NP were substantially higher after dosing twice, 28 days apart with 10 μg liposome-entrapped DNA compared to naked DNA. At all time points measured, mice immunised with naked DNA showed no greater immune response compared to the control, non-immunised group. In contrast, as early as day 49, responses were significantly higher in mice injected with DNA entrapped in DRV liposomes containing DOTAP compared to the control group and mice immunised with naked DNA. By day 56, all total IgG responses from mice immunised with both DRV formulations were significantly higher. Comparison between the DRV formulations revealed no significant difference in immune responses elicited except at day 114, where the humoural responses of the group injected with liposomal formulation containing DC-Chol dropped to significantly lower levels that those measured in mice which received the DOTAP formulation. Similar results were found when the IgG1 and IgG2a subclass responses were determined. These results suggest that, not only can DNA be effectively entrapped within liposomes using the DRV method but that such DRV liposomes containing DNA may be a useful system for subcutaneous delivery of DNA vaccines. © 2003 Taylor & Francis Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of increasing culture age on cell surface hydrophobicity (CSH) and cell surface electrostatic charge (measured as zeta potential) of conidia from five isolates of Coniothyrium minitans representing three different morphological types was examined. Conidial CSH of three isolates (A2 960/1, CH1 and CH2) decreased with culture age, whereas CSH of two others (B 1300/2 and IMI 134523) remained high for the whole 42 day experimental period. In contrast, cell surface electrostatic charge decreased uniformly in conidia of all five isolates for the first 34 d and then rose slightly at 42 d. The variation in cell surface electrostatic charge (spectrum width) of the sampled conidia decreased with age for all five isolates. In all five isolates cell surface electrostatic charge of conidia became increasingly negative as the pH of the buffer used to suspend conidia was increased from pH 3.0 to 9.0. No relationship between colony morphology of C. minitans and conidial CSH and cell surface electrostatic charge was found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common autosomal recessive disorder affecting Caucasian populations. The pathophysiology of this disorder predisposes the lungs of affected patients to chronic infection, typically by Pseudomonas aeruginosa, which is the main cause of morbidity and mortality. Recently, attention has focused on aerosolised polymyxins, which are given prophylactically in an effort to limit infection and subsequent lung damage. This class of antimicrobial compounds is highly active against P. aeruginosa and possess the advantage that resistance rarely develops. However, the rapid lung clearance of antibiotics is a well documented phenomenon and it was postulated that polymyxin treatment could be further improved by liposomal encapsulation. As part of the development of liposomal polymyxin B, analytical methodology (radiolabelling, HPLC and protein assay) applicable to liposomal formulations was established. Liposomes were prepared by the dehydration-rehydration method and encapsulation efficiencies were determined for a number of phospholipid compositions. Vesicles were characterised with respect to size, zeta potential, morphology and release characteristics. The surface hydrophobicity of vesicles was quantified by hydrophobic interaction chromatography and it was found that this method produced comparable results to techniques conventionally used to assess this property. In vivo testing of liposomal polymyxins demonstrated that encapsulation successfully prevented the rapid pulmonary clearance of PXB. Antimicrobial activity of liposomal formulations was quantified and found to be dependent on both the vesicle surface characteristics and their release profile. Investigation of the interaction of PXB with lipopolysaccharide was undertaken and results demonstrated that PXB caused significant structural distortion of the lipid A region. This may be sufficient to abrogate the potentiating action of LPS in the inflammatory cascade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern engineering requirements are frequently near the limits of application of conventional materials. For many purposes, particularly tribological, the most satisfactory solution is frequently the application of a resistant coating to the surface of a common metal. Electrodeposited cermet coatings have proved very satisfactory: some of the factors underlying the cernet electrodeposition process have been investigated. A ceramic particle in contact with an electrolyte solution will carry a charge which may affect the kinetics of the suspended particle under electroplating conditions. Measurerment has been made of this charge on particles of silicon carbide, chrornium diboride and quartz, in contiact with solutions of copper sulphate/ sulphuric acid in terms of the electrokinetic (zeta) potential and also as surface charge density. The methocl used was that of streaming potential and streaming current measurement

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) incorporating the glycolipid trehalose 6,6-dibehenate (TDB) forms a promising liposomal vaccine adjuvant. To be exploited as effective subunit vaccine delivery systems, the physicochemical characteristics of liposomes were studied in detail and correlated with their effectiveness in vivo, in an attempt to elucidate key aspects controlling their efficacy. This research took the previously optimised DDA-TDB system as a foundation for a range of formulations incorporating additional lipids of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), by incrementally replacing the cationic content within DDA-TDB or reducing the total DDA-TDB dose upon its substitution, to ascertain the role of DDA and the effect of DDA-TDB concentration in influencing the resultant immunological performance upon delivery of the novel subunit TB vaccine, Ag85B–ESAT-6-Rv2660c (H56 vaccine). With the aim of using the DPPC based systems for pulmonary vaccine delivery and the DSPC systems for application via the intramuscular route, initial work focused on physicochemical characterisation of the systems with incorporation of DPPC or DSPC displaying comparable physical stability, morphological structure and levels of antigen retention to that of DDA-TDB. Thermodynamic analysis was also conducted to detect main phase transition temperatures and subsequent in vitro cell culture studies demonstrated a favourable reduction in cytotoxicity, stimulation of phagocytic activity and macrophage activation in response to the proposed liposomal immunoadjuvants. Immunisation of mice with H56 vaccine via the proposed liposomal adjuvants showed that DDA was an important factor in mediating resultant immune responses, with partial replacement or substitution of DDA-TDB stimulating Th1 type cellular immunity characterised by elevated levels of IgG2b antibodies and IFN-? and IL-2 cytokines, essential for providing protective efficacy against TB. Upon increased DSPC content within the formulation, either by DDA replacement or reduction of DDA and TDB, responses were skewed towards Th2 type immunity with reduced IgG2b antibody levels and elevated IL-5 and IL-10 cytokine production, as resultant immunological responses were independent of liposomal zeta potential. The role of the cationic DDA lipid and the effect of DDA-TDB concentration were appreciated as the proposed liposomal formulations elicited antigen specific antibody and cellular immune responses, demonstrating the potential of cationic liposomes to be utilised as adjuvants for subunit vaccine delivery. Furthermore, the promising capability of the novel H56 vaccine candidate in eliciting protection against TB was apparent in a mouse model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmid DNA pRc/CMV HBS (5.6 kb) (100 microg) encoding the S (small) region of hepatitis B surface antigen was incorporated by the dehydration-rehydration method into liposomes composed of 16 micromol egg phosphatidylcholine (PC), 8 micromol dioleoylphosphatidylcholine (DOPE) and 1, 2-diodeoyl-3-(trimethylammonium)propane (DOTAP) (cationic liposomes) or phosphatidylglycerol (anionic liposomes) in a variety of molar ratios. The method, entailing mixing of small unilamellar vesicles (SUV) with the DNA, followed by dehydration and rehydration, yielded incorporation values of 95-97 and 48-54% of the DNA used, respectively. Mixing of preformed cationic liposomes with 100 microg plasmid DNA also led to high complexation values of 73-97%. As expected, the association of DNA with preformed anionic liposomes was low (9%). Further work with cationic PC/DOPE/DOTAP liposomes attempted to establish differences in the nature of DNA association with the vesicles after complexation and the constructs generated by the process of dehydration/rehydration. Several lines of evidence obtained from studies on vesicle size and zeta-potential, fluorescent microscopy and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, interaction of DNA with preformed cationic SUV as above, or with cationic SUV made of DOPE and DOTAP (1:1 molar ratio; ESCORT Transfection Reagent), leads to the formation of large complexes with externally bound DNA. For instance, such DNA is accessible to and can be dissociated by competing anionic SDS molecules. However, dehydration of the DNA-SUV complexes and subsequent rehydration, generates submicron size liposomes incorporating most of the DNA in a fashion that prevents DNA displacement through anion competition. It is suggested that, in this case, DNA is entrapped within the aqueous compartments, in between bilayers, presumably bound to the cationic charges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advantages of liposomes as delivery systems for peptide, protein and DNA vaccines is well-recognised, unfortunately their application has been stinted by their instability during storage and their limited shelf-life. Further, sterilisation of these systems has been problematic, with degradation of the liposomes being reported after sterilisation using the various techniques available. Work form our laboratory has investigated techniques that can be applied to particulate liposomal vaccines such that they can be prepared in a freeze-dried and sterile format. In this article, we describe techniques for the lyophilisation, cryoprotection and sterilisation of liposomal vaccines. Applying these methods allows for the retention of both the chemical integrity of the lipids and the key physico-chemical characteristics of the liposomes (e.g., particle size, zeta potential, and dynamic viscosity), thus supporting the enhanced transition of liposomal vaccines from the bench to the clinic. © 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incorporation of the glycolipid trehalose 6,6′-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4°C and 25°C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-γ cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-γ was identified as CD4 T cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives - Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) combined with trehalose 6,6'-dibehenate (TDB) elicit strong cell-mediated and antibody immune responses; DDA facilitates antigen adsorption and presentation while TDB potentiates the immune response. To further investigate the role of DDA, DDA was replaced with the neutral lipid of distearoyl-sn-glycero-3-phosphocholine (DSPC) over a series of concentrations and these systems investigated as adjuvants for the delivery of Ag85B–ESAT-6-Rv2660c, a multistage tuberculosis vaccine. Methods - Liposomal were prepared at a 5?:?1 DDA–TDB weight ratio and DDA content incrementally replaced with DSPC. The physicochemical characteristics were assessed (vesicle size, zeta potential and antigen loading), and the ability of these systems to act as adjuvants was considered. Key findings - As DDA was replaced with DSPC within the liposomal formulation, the cationic nature of the vesicles decreases as does electrostatically binding of the anionic H56 antigen (Hybrid56; Ag85B-ESAT6-Rv2660c); however, only when DDA was completed replaced with DSPC did vesicle size increase significantly. T-helper 1 (Th1)-type cell-mediated immune responses reduced. This reduction in responses was attributed to the replacement of DDA with DSPC rather than the reduction in DDA dose concentration within the formulation. Conclusion - These results suggest Th1 responses can be controlled by tailoring the DDA/DSPC ratio within the liposomal adjuvant system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) combined with trehalose 6,6′-dibehenate (TDB) elicit strong cell-mediated and antibody immune responses; DDA facilitates antigen adsorption and presentation while TDB potentiates the immune response. To further investigate the role of DDA, DDA was replaced with the neutral lipid of distearoyl-sn- glycero-3-phosphocholine (DSPC) over a series of concentrations and these systems investigated as adjuvants for the delivery of Ag85B-ESAT-6-Rv2660c, a multistage tuberculosis vaccine. Methods Liposomal were prepared at a 5: 1 DDA-TDB weight ratio and DDA content incrementally replaced with DSPC. The physicochemical characteristics were assessed (vesicle size, zeta potential and antigen loading), and the ability of these systems to act as adjuvants was considered. Key findings As DDA was replaced with DSPC within the liposomal formulation, the cationic nature of the vesicles decreases as does electrostatically binding of the anionic H56 antigen (Hybrid56; Ag85B-ESAT6-Rv2660c); however, only when DDA was completed replaced with DSPC did vesicle size increase significantly. T-helper 1 (Th1)-type cell-mediated immune responses reduced. This reduction in responses was attributed to the replacement of DDA with DSPC rather than the reduction in DDA dose concentration within the formulation. Conclusion These results suggest Th1 responses can be controlled by tailoring the DDA/DSPC ratio within the liposomal adjuvant system. © 2013 Royal Pharmaceutical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pure poly(lactide-co-glycolide) and polystyrene surfaces are not very suitable to support cell adhesion/ spreading owing to their hydrophobic nature and low surface energy. The interior surfaces of large porous 3D scaffolds were modified and activated using radio-frequency, low-pressure air plasma. An increase in the wettability of the surface was observed after exposure to air plasma, as indicated by the decrease in the contact angles of the wet porous system. The surface composition of the plasma-treated polymers was studied using X-ray photoelectron spectroscopy. pH-dependent zeta-potential measurements confirm the presence of an increased number of functional groups. However, the plasma-treated surfaces have a less acidic character than the original polymer surfaces as seen by a shift in their isoelectric point. Zeta-potential, as well as contact angle measurements, on 3D scaffolds confirm that plasma treatment is a useful tool to modify the surface properties throughout the interior of large scaffolds. © 2008 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous 3D polymer scaffolds prepared by TIPS from PLGA (53:47) and PS are intrinsically hydrophobic which prohibits the wetting of such porous media by water. This limits the application of these materials for the fabrication of scaffolds as supports for cell adhesion/spreading. Here we demonstrate that the interior surfaces of polymer scaffolds can be effectively modified using atmospheric air plasma (AP). Polymer films (2D) were also modified as control. The surface properties of wet 2D and 3D scaffolds were characterised using zeta-potential and wettability measurements. These techniques were used as the primary screening methods to assess surface chemistry and the wettability of wet polymer constructs prior and after the surface treatment. The surfaces of the original polymers are rather hydrophobic as highlighted but contain acidic functional groups. Increased exposure to AP improved the water wetting of the treated surfaces because of the formation of a variety of oxygen and nitrogen containing functions. The morphology and pore structure was assessed using SEM and a liquid displacement test. The PLGA and PS foam samples have central regions which are open porous interconnected networks with maximum pore diameters of 49 μm for PLGA and 73 μm for PS foams. (Figure Presented) © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of protein function in a cellular context ideally requires physiologically representative levels of that protein. Thus conventional nucleic acid-based transfection methods are far from ideal owing to the over expression that generally results. Likewise fusions with protein transduction domains can be problematic whilst delivery via liposomes/nanoparticles typically results in endosomal localisation. Recently polymer microspheres have been reported to be highly effective at delivering proteins into cells and thus provide a viable new alternative for protein delivery (protein transduction). Herein we describe the successful delivery of active ribonuclease A into HeLa cells via novel polymer core-silica shell microspheres. Specifically, poly(styrene-co-vinylbenzylisothiouronium chloride) core particles, generated by dispersion polymerisation, were coated with a poly(styrene-co-trimethoxysilylpropyl methacrylate) shell. The resultant core-shell morphology was characterised by transmission electron, scanning electron and fluorescence confocal microscopies, whilst size and surface charge was assessed by dynamic light scattering and zeta-potential measurements, respectively. Subsequently ribonuclease A was coupled to the microspheres using simple carbodiimide chemistry. Gel electrophoresis confirmed and quantified the activity of the immobilised enzyme against purified HeLa RNA. Finally, the polymer-protein particles were evaluated as protein-transduction vectors in vitro to deliver active ribonuclease A to HeLa cells. Cellular uptake of the microspheres was successful and resulted in reduced levels of both intracellular RNA and cell viability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis. Methods The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ). Key findings While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6. Conclusion This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.