6 resultados para Z(4)-linearity
em Aston University Research Archive
Resumo:
[Cu(hyetrz)3](CF3SO3)2·H2O [hyetrz = 4-(2′-hydroxyethyl)-1,2,4-triazole] represents the first structurally characterised ferromagnetically coupled CuII chain compound containing triple N1,N2-1,2,4-triazole bridges. catena-[μ-Tris{4-(2′-hydroxyethyl)-1,2,4-triazole-N1,N2}copper(II)] bis(trifluoromethanesulfonate) hydrate (C14H23F6S2O10CuN9) crystallises in the triclinic space group Pl, a = 13.54(3), b = 14.37(3), c = 15.61(4) Å, α = 95.9(1), β = 104.9(1), γ = 106.5(1)°, V = 2763(11) Å3, Z = 4 (CuII units). The CuII ions are linked by triple N1,N2-1,2,4-triazole bridges yielding an alternating chain with Cu1−Cu2 = 3.8842(4) Å and Cu2−Cu3 = 3.9354(4) Å. Analysis of the magnetic data according to a high-temperature series expansion gives a J value of +1.45(3) cm−1. The nature and the magnitude of the ferromagnetic exchange have been discussed on the basis of the structural features. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Effect of a commercially available warm compress on eyelid temperature and tear film in healthy eyes
Resumo:
Purpose: To evaluate eyelid temperature change and short-term effects on tear film stability and lipid layer thickness in healthy patients using a commercially available warm compress (MGDRx EyeBag) for ophthalmic use. Methods: Eyelid temperature, noninvasive tear film breakup time (NITBUT), and tear film lipid layer thickness (TFLLT) of 22 healthy subjects were measured at baseline, immediately after, and 10 minutes after application of a heated eyebag for 5 minutes to one eye selected at random. A nonheated eyebag was applied to the contralateral eye as a control. Results: Eyelid temperatures, NITBUT, and TFLLT increased significantly from baseline in test eyes immediately after removal of the heated eyebag compared with those in control eyes (maximum temperature change, 2.3 +/- 1.2[degrees]C vs. 0.3 +/- 0.5[degrees]C, F = 20.533, p < 0.001; NITBUT change, 4.0 +/- 2.3 seconds vs. 0.4 +/- 1.7 seconds, p < 0.001; TFLLT change, 2.0 +/- 0.9 grades vs. 0.1 +/- 0.4 grades, Z = -4.035, p < 0.001). After 10 minutes, measurements remained significantly higher than those in controls (maximum temperature change, 1.0 +/- 0.7[degrees]C vs. 0.1 +/- 0.3[degrees]C, F = 14.247, p < 0.001; NITBUT change, 3.6 +/- 2.1 seconds vs. 0.1 +/- 1.9 seconds, p < 0.001; TFLLT change, 1.5 +/- 0.9 vs. 0.2 +/- 0.5 grades, Z = -3.835, p < 0.001). No adverse events occurred during the study. Conclusions: The MGDRx EyeBag is a simple device for heating the eyelids, resulting in increased NITBUT and TFLLT in subjects without meibomian gland dysfunction that seem to be clinically significant. Future studies are required to determine clinical efficacy and evaluate safety after long-term therapy in meibomian gland dysfunction patients. © 2013 American Academy of Optometry
Effect of a commercially available warm compress on eyelid temperature and tear film in healthy eyes
Resumo:
PURPOSE: To evaluate eyelid temperature change and short-term effects on tear film stability and lipid layer thickness in healthy patients using a commercially available warm compress (MGDRx EyeBag) for ophthalmic use. METHODS: Eyelid temperature, noninvasive tear film breakup time (NITBUT), and tear film lipid layer thickness (TFLLT) of 22 healthy subjects were measured at baseline, immediately after, and 10 minutes after application of a heated eyebag for 5 minutes to one eye selected at random. A nonheated eyebag was applied to the contralateral eye as a control. RESULTS: Eyelid temperatures, NITBUT, and TFLLT increased significantly from baseline in test eyes immediately after removal of the heated eyebag compared with those in control eyes (maximum temperature change, 2.3 ± 1.2 °C vs. 0.3 ± 0.5 °C, F = 20.533, p <0.001; NITBUT change, 4.0 ± 2.3 seconds vs. 0.4 ± 1.7 seconds, p <0.001; TFLLT change, 2.0 ± 0.9 grades vs. 0.1 ± 0.4 grades, Z = -4.035, p <0.001). After 10 minutes, measurements remained significantly higher than those in controls (maximum temperature change, 1.0 ± 0.7 °C vs. 0.1 ± 0.3 °C, F = 14.247, p <0.001; NITBUT change, 3.6 ± 2.1 seconds vs. 0.1 ± 1.9 seconds, p <0.001; TFLLT change, 1.5 ± 0.9 vs. 0.2 ± 0.5 grades, Z = -3.835, p <0.001). No adverse events occurred during the study. CONCLUSIONS: The MGDRx EyeBag is a simple device for heating the eyelids, resulting in increased NITBUT and TFLLT in subjects without meibomian gland dysfunction that seem to be clinically significant. Future studies are required to determine clinical efficacy and evaluate safety after long-term therapy in meibomian gland dysfunction patients. Copyright © 2014 American Academy of Optometry.
Resumo:
Purpose: To explore the repeatability of lower-order and higher-order ocular aberrations measured in patients with keratoconus. Methods: The IRX-3 (Imagine Eyes, Paris, France) aberrometer was used to record lower-order and higher-order aberrations in 31 eyes of 31 patients with keratoconus. Four monocular measurements were taken consecutively for each patient. The aberrometry data were analysed up to the 5th Zernike order for a 4-mm pupil diameter. The data were evaluated using repeated-measures anova and Friedman analyses. Repeatability was analysed using within-subject standard deviation (SW) and the repeatability limit (r) calculated as 1.96 ×√2×Sw. Results: Of the 11 aberration terms evaluated, the repeatability of Z (2,0) (mean= 1.36μm; SW=0.09μm; r=0.26μm); Z (2,±2) RMS (mean=1.05μm; SW= 0.09μm; r=0.24μm) and Z (4,0) aberrations (mean=0.34μm; SW=0.09 μm; r=0.24μm) showed the highest variability. In contrast, Z (3,±1) RMS aberrations (mean=0.85μm; SW=0.06μm; r=0.16μm) and Z (4,±2) RMS aberrations (mean=0.40μm; SW=0.07μm; r=0.18μm) showed comparatively better repeatability. Conclusions: The lower-order and higher-order aberrations measured in this group of keratoconic patients showed higher levels of variability compared to previous investigations of visually-normal subjects. These results may be of interest to eyecare practitioners involved in the design and fitting of aberration-controlling contact lenses for patients with keratoconus. © 2011 The College of Optometrists.
Resumo:
The reaction of Cs4[Re6Te8(CN)6]·2H2O with Cu(en)2Cl2 in water affords crystals of a cluster complex [{Cu(H2O)(en) 2}{Cu(en)2}Re6Te8(CN)6]·3H2O. The structure of the compound is determined by single crystal X-ray diffraction (a = 10.8082(4) Å, b = 16.5404(6) Å, c = 24.6480(7) Å, β = 92.696(1)°, V = 4401.5(3) Å3, Z = 4, space group P21/n, R 1 = 0.0331, wR 2 (all data) = 0.0652). In the complex, cluster [Re6Te8(CN)6]4- anions are linked by Cu2+ cations into zigzag chains through cyanide bridges. The coordination environment of the copper cations is complemented by ethylenediamine molecules. Each of the cluster anions is additionally coordinated by a terminal fragment {Cu(H2O)(en)2}. © 2014 Pleiades Publishing, Ltd.
Resumo:
A rapid one-pot synthesis of 3-alkyl-5-[(Z)-arylmethylidene]-1,3-thiazolidine-2,4-dionesis described that occurs in recyclable ionic liquid [bmim]PF6 (1-butyl-3-methylimidazolium hexafluorophosphate).Significant rate enhancement and good selectivity have been observed.