5 resultados para YOUNGS MODULUS

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the project was to synthesise hydrophilic derivatives of 1,2-dihydroxy-3,5-cyclohexadiene (DHCD) and to copolymerise these derivatives with 2-hydroxyethyl methacrylate (HEMA), to give a completely new range of hydrogel materials. It was thought that hydro gels incorporating hydrophilic derivatives of DHCD could have good mechanical properties and good water binding ability. A model compound for cis-DHCD was sought, as cis-DHCD was expensive and stable under only a narrow range of conditions. Catechol was found to be an excellent model for cis-DHCD, as 1H NMR spectroscopy indicated that both compounds contained eclipsed hydroxy groups and flat rings. A number of catechol derivatives were prepared in good yield, under non-acidic conditions at room temperature. The limited availabilty of cis-DHCD led to an investigation into synthesising hydrophilic derivatives of both cis and trans-DHCD indirectly. Hydrophobic derivatives were easily prepared by indirect routes, but it was found that hydrophilic derivatives were considerably more difficult to synthesise. A number of novel routes to both cis and trans-DHCD were also explored. Copolymerisation of diacetate, dimethylcarbonate and dipivalate derivatives of cis-DHCD with HEMA, to form a hitherto unknown group of hydrogels, is reported. Hydrogels containing these monomers showed significant improvements in both tensile strength and Youngs modulus, at both equivalent composition and water content, over the corresponding HEMA / styrene and HEMA / methyl methacrylate analogues. It was observed that derivatives of trans-DHCD polymerise with difficulty. 1H NMR studies indicated that both faces of the ring were shielded by the pendant groups thereby preventing efficient polymerisation of the trans monomers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bioavailability of BCS II compounds may be improved by an enhanced solubility and dissolution rate. Four carboxylic acid drugs were selected, which were flurbiprofen, etodolac, ibuprofen and gemfibrozil. The drugs were chosen because they are weak acids with poor aqueous solubility and should readily form salts. The counterions used for salt formation were: butylamine, pentylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan­2-ol, 2-amino-2-methyl propan-1,3-ol and tromethamine. Solubility was partially controlled by the saturated solution pH with the butylamine counterion increasing the solution pH and solubility and dissolution to the greatest extent. As the chain length increased, solubility was reduced due to the increasing lipophilic nature of the counterion. The benzylamine and cyclohexylamine counterions produced crystalline, stable salts but did not improve solubility and dissolution significantly compared to the parent compound. The substitution of hydroxyl groups to tert-butylamine counterions produced an increase in solubility and dissolution. AMP2 resulted in the most enhanced solubility and dissolution compared to the parent drug but using the tris salt did not further improve solubility due to a very stable crystal lattice structure. The parent drugs were very difficult to compress due to orientation effects and lamination. Compacts were prepared of each parent drug and salt and their modulus of elasticity values were measured using a three-point bend (Young’s modulus, E0) were extrapolated to zero porosity and compared. Compressibility and E0 were improved with the butylamine, tert-butylamine, cyclohexylamine and AMP2 counterions. The most significant improvement in compression and E0 was with the AMP2 salts. Mechanical properties were related to the hydrogen bonding within the crystal lattice structure for the gemfibrozil salt series.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stress sensitivity of polymer optical fibre (POF) based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions is investigated. POF has received high interest in recent years due to its different material properties compared to its silica counterpart. Biocompatibility, a higher failure strain and the highly elastic nature of POF are some of the main advantages. The much lower Young’s modulus of polymer materials compared to silica offers enhanced stress sensitivity to POF based sensors which renders them great candidates for acoustic wave receivers and any kind of force detection. The main drawback in POF technology is perhaps the high fibre loss. In a lossless fibre the sensitivity of an interferometer is proportional to its cavity length. However, the presence of the attenuation along the optical path can significantly reduce the finesse of the Fabry-Perot interferometer and it can negatively affect its sensitivity at some point. The reflectivity of the two gratings used to form the interferometer can be also reduced as the fibre loss increases. In this work, a numerical model is developed to study the performance of POF based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions. Various optical and physical properties are considered such as grating physical length, grating effective length which indicates the point where the light is effectively reflected, refractive index modulation of the grating, cavity length of the interferometer, attenuation and operating wavelength. Using this model, we are able to identify the regimes in which the PMMA based sensor offer enhanced stress sensitivity compared to silica based one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permanent deformation and fracture may develop simultaneously when an asphalt mixture is subjected to a compressive load. The objective of this research is to separate viscoplasticity and viscofracture from viscoelasticity so that the permanent deformation and fracture of the asphalt mixtures can be individually and accurately characterized without the influence of viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two binder types, two air void contents, and two aging conditions are first obtained by conducting nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are analyzed by using the linear viscoelastic theory in which the creep compliance and the relaxation modulus are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures remained constant with the load cycles. The undamaged asphalt mixtures are then used to perform the destructive dynamic modulus tests in which the dynamic modulus and phase angle of the damaged asphalt mixtures vary with load cycles. This indicates plastic evolution and crack propagation. The growth of cracks is signaled principally by the increase of the phase angle, which occurs only in the tertiary stage. The measured total strain is successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain, and viscofracture strain by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence principle. The separated viscoplastic strain uses a predictive model to characterize the permanent deformation. The separated viscofracture strain uses a fracture strain model to characterize the fracture of the asphalt mixtures in which the flow number is determined and a crack speed index is proposed. Comparisons of the 16 samples show that aged asphalt mixtures with a low air void content have a better performance, resisting permanent deformation and fracture. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have systematically measured the differential stress-optic coefficient, ΔC, and Young's modulus, E, in a number of PMMA fibers drawn with different stress, ranging from 2 up to 27 MPa. Effect of temperature annealing on those parameters was also investigated. ΔC was determined in transverse illumination by measuring the dependence of birefringence on additional axial stress applied to the fiber. Our results show that ΔC in PMMA fibers has a negative sign and ranges from -4.5 to -1.5×10-12 Pa -1 depending on the drawing stress. Increase of the drawing stress results in greater initial fiber birefringence and lower ΔC. The dependence of ΔC and initial birefringence upon drawing stress is nonlinear and gradually saturates for higher drawing stress. Moreover, we find that ΔC is linearly proportional to initial fiber birefringence and that annealing the fiber has no impact on the slope of this dependence. On the other hand, no clear dependence was observed between the fiber drawing stress and the Young's modulus of the fibers as measured using microscopic digital image correlation with the fibers tensioned using an Instron tension tester. © 2010 SPIE.