9 resultados para YES assay
em Aston University Research Archive
Resumo:
Bone marrow mesenchymal stem cells (MSCs) promote nerve growth and functional recovery in animal models of spinal cord injury (SCI) to varying levels. The authors have tested high-content screening to examine the effects of MSC-conditioned medium (MSC-CM) on neurite outgrowth from the human neuroblastoma cell line SH-SY5Y and from explants of chick dorsal root ganglia (DRG). These analyses were compared to previously published methods that involved hand-tracing individual neurites. Both methods demonstrated that MSC-CM promoted neurite outgrowth. Each showed the proportion of SH-SY5Y cells with neurites increased by ~200% in MSC-CM within 48 h, and the number of neurites/SH-SY5Y cells was significantly increased in MSC-CM compared with control medium. For high-content screening, the analysis was performed within minutes, testing multiple samples of MSC-CM and in each case measuring >15,000 SH-SY5Y cells. In contrast, the manual measurement of neurite outgrowth from >200 SH-SY5Y cells in a single sample of MSC-CM took at least 1 h. High-content analysis provided additional measures of increased neurite branching in MSC-CM compared with control medium. MSC-CM was also found to stimulate neurite outgrowth in DRG explants using either method. The application of the high-content analysis was less well optimized for measuring neurite outgrowth from DRG explants than from SH-SY5Y cells.
Resumo:
Although techniques such as biopanning rely heavily upon the screening of randomized gene libraries, there is surprisingly little information available on the construction of those libraries. In general, it is based on the cloning of 'randomized' synthetic oligonucleotides, in which given position(s) contain an equal mixture of all four bases. Yet, many supposedly 'randomized' libraries contain significant elements of bias and/or omission. Here, we report the development and validation of a new, PCR-based assay that enables rapid examination of library composition both prior to and after cloning. By using our assay to analyse model libraries, we demonstrate that the cloning of a given distribution of sequences does not necessarily result in a similarly composed library of clones. Thus, while bias in randomized synthetic oligonucleotide mixtures can be virtually eliminated by using unequal ratios of the four phosphoramidites, the use of such mixtures does not ensure retrieval of a truly randomized library. We propose that in the absence of a technique to control cloning frequencies, the ability to analyse the composition of libraries after cloning will enhance significantly the quality of information derived from those libraries. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
It has been recognised for some time that a full code of amino acid-based recognition of DNA sequences would be useful. Several approaches, which utilise small DNA binding motifs called zinc fingers, are presently employed. None of the current approaches successfully combine a combinatorial approach to the elucidation of a code with a single stage high throughput screening assay. The work outlined here describes the development of a model system for the study of DNA protein interactions and the development of a high throughput assay for detection of such interactions. A zinc finger protein was designed which will bind with high affinity and specificity to a known DNA sequence. For future work it is possible to mutate the region of the zinc finger responsible for the specificity of binding, in order to observe the effect on the DNA / protein interactions. The zinc finger protein was initially synthesised as a His tagged product. It was not possible however to develop a high throughput assay using the His tagged zinc finger protein. The gene encoding the zinc finger protein was altered and the protein synthesised as a Glutathione S-Transferase (GST) fusion product. A successful assay was developed using the GST protein and Scintillation Proximity Assay technology (Amersham Pharmacia Biotech). The scintillation proximity assay is a dynamic assay that allows the DNA protein interactions to be studied in "real time". This assay not only provides a high throughput method of screening zinc finger proteins for potential ligands but also allows the effect of addition of reagents or competitor ligands to be monitored.
Resumo:
Whether to assess the functionality of equipment or as a determinate for the accuracy of assays, reference standards are essential for the purposes of standardisation and validation. The ELISPOT assay, developed over thirty years ago, has emerged as a leading immunological assay in the development of novel vaccines for the assessment of efficacy. However, with its widespread use, there is a growing demand for a greater level of standardisation across different laboratories. One of the major difficulties in achieving this goal has been the lack of definitive reference standards. This is partly due to the ex vivo nature of the assay, which relies on cells being placed directly into the wells. Thus, the aim of this thesis was to produce an artificial reference standard using liposomes, for use within the assay. Liposomes are spherical bilayer vesicles with an enclosed aqueous compartment and therefore are models for biological membranes. Initial work examined pre-design considerations in order to produce an optimal formulation that would closely mimic the action of the cells ordinarily placed on the assay. Recognition of the structural differences between liposomes and cells led to the formulation of liposomes with increased density. This was achieved by using a synthesised cholesterol analogue. By incorporating this cholesterol analogue in liposomes, increased sedimentation rates were observed within the first few hours. The optimal liposome formulation from these studies was composed of 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol (Chol) and brominated cholesterol (Brchol) at a 16:4:12 µMol ratio, based on a significantly higher (p<0.01) sedimentation (as determined by a percentage transmission of 59 ± 5.9 % compared to the control formulation at 29 ± 12 % after four hours). By considering a range of liposome formulations ‘proof of principle’ for using liposomes as ELISPOT reference standards was shown; recombinant IFN? cytokine was successfully entrapped within vesicles of different lipid compositions, which were able to promote spot formation within the ELISPOT assay. Using optimised liposome formulations composed of phosphatidylcholine with or without cholesterol (16 µMol total lipid) further development was undertaken to produce an optimised, scalable protocol for the production of liposomes as reference standards. A linear increase in spot number by the manipulation of cytokine concentration and/or lipid concentrations was not possible, potentially due to the saturation that occurred within the base of wells. Investigations into storage of the formulations demonstrated the feasibility of freezing and lyophilisation with disaccharide cryoprotectants, but also highlighted the need for further protocol optimisation to achieve a robust reference standard upon storage. Finally, the transfer of small-scale production to a medium lab-scale batch (40 mL) demonstrated this was feasible within the laboratory using the optimised protocol.
Resumo:
Background: Ketorolac, a potent nonsteroidal anti-inflammatory drug used for pain control in children, exists as a racemate of inactive R (+) and active S (-) enantiomers. Aim: To develop a microsampling assay for the enantioselective analysis of ketorolac in children. Methods: Ketorolac enantiomers were extracted from 50 µl of plasma by liquid–liquid extraction and separated on a ChiralPak AD-RH. Detection was by a TSQ quantum triple quadrupole mass spectrometer with an electrospray ionisation source operating in a positive ion mode. Five children (age 13.8 (1.6) years, weight 52.7 (7.2) kg), were administered intravenous ketorolac 0.5 mg/kg (maximum 10 mg) and blood samples were taken at 0, 0.25, 0.5, 1, 2, 4, 6, 8 and 12 h post administration. CL, VD and t1/2 were calculated based on non-compartmental methods. Results: The standard curves for R (+) and S (-) ketorolac were linear in the range 0–2000 ng/ml. The LLOQs of the method were 0.15 ng on column and 0.31 ng on column for R (+) and S (-) ketorolac, respectively. The median (range) VD and CL of R (+) and S (-) ketorolac were 0.12 l/kg (0.07–0.17), 0.017 l/h/kg (0.12–0.29) and 0.17 (0.09–0.31) l/kg, 0.049 (0.02–0.1) l/h/kg, p = 0.043), respectively. The median (range) elimination half-life (t1/2) of the R (+) and S (-) ketorolac was 5.0 h (2.5–5.8) and 3.1 h (1.8–4.4), p = 0.043), respectively. Conclusion: The development of a simple, rapid and reliable ketorolac assay suitable for paediatric PK studies is reported. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Anterior gradient-2 protein was identified using proteomic technologies as a p53 inhibitor which is overexpressed in human cancers, and this protein presents a novel pro-oncogenic target with which to develop diagnostic assays for biomarker detection in clinical tissue. Combinatorial phage-peptide libraries were used to select 12 amino acid polypeptide aptamers toward anterior gradient-2 to determine whether methods can be developed to affinity purify the protein from clinical biopsies. Selecting phage aptamers through four rounds of screening on recombinant human anterior gradient-2 protein identified two classes of peptide ligand that bind to distinct epitopes on anterior gradient-2 protein in an immunoblot. Synthetic biotinylated peptide aptamers bound in an ELISA format to anterior gradient-2, and substitution mutagenesis further minimized one polypeptide aptamer to a hexapeptide core. Aptamers containing this latter consensus sequence could be used to affinity purify to homogeneity human anterior gradient-2 protein from a single clinical biopsy. The spotting of a panel of peptide aptamers onto a protein microarray matrix could be used to quantify anterior gradient-2 protein from crude clinical biopsy lysates, providing a format for quantitative screening. These data highlight the utility of peptide combinatorial libraries to acquire rapidly a high-affinity ligand that can selectively bind a target protein from a clinical biopsy and provide a technological approach for clinical biomarker assay development in an aptamer microarray format.
Resumo:
Objective: To describe the effect of age and body size on enantiomer selective pharmacokinetic (PK) of intravenous ketorolac in children using a microanalytical assay. Methods: Blood samples were obtained at 0, 15 and 30 min and at 1, 2, 4, 6, 8 and 12 h after a weight-dependent dose of ketorolac. Enantiomer concentration was measured using a liquid chromatography tandem mass spectrometry method. Non-linear mixed-effect modelling was used to assess PK parameters. Key findings: Data from 11 children (1.7–15.6 years, weight 10.7–67.4 kg) were best described by a two-compartment model for R(+), S(−) and racemic ketorolac. Only weight (WT) significantly improved the goodness of fit. The final population models were CL = 1.5 × (WT/46)0.75, V1 = 8.2 × (WT/46), Q = 3.4 × (WT/46)0.75, V2 = 7.9 × (WT/46), CL = 2.98 × (WT/46), V1 = 13.2 × (WT/46), Q = 2.8 × (WT/46)0.75, V2 = 51.5 × (WT/46), and CL = 1.1 × (WT/46)0.75, V1 = 4.9 × (WT/46), Q = 1.7 × (WT/46)0.75 and V2 = 6.3 × (WT/46)for R(+), S(−) and racemic ketorolac. Conclusions: Only body weight influenced the PK parameters for R(+) and S(−) ketorolac. Using allometric size scaling significantly affected the clearances (CL, Q) and volumes of distribution (V1, V2).