26 resultados para Xenomai, Xbee, control loop, PID, BeagleBone
em Aston University Research Archive
Resumo:
The operation state of photovoltaic Module Integrated Converter (MIC) is subjected to change due to different source and load conditions, while state-swap is usually implemented with flow chart based sequential controller in the past research. In this paper, the signatures for different operational states are evaluated and investigated, which lead to an effective control integrated finite state machine (CIFSM), providing real-time state-swap as fast as the local control loop. The proposed CIFSM is implemented digitally for a boost type MIC prototype and tested under a variety of load and source conditions. The test results prove the effectiveness of the proposed CIFSM design.
Resumo:
A cascaded DC-DC boost converter is one of the ways to integrate hybrid battery types within a grid-tie inverter. Due to the presence of different battery parameters within the system such as, state-of-charge and/or capacity, a module based distributed power sharing strategy may be used. To implement this sharing strategy, the desired control reference for each module voltage/current control loop needs to be dynamically varied according to these battery parameters. This can cause stability problem within the cascaded converters due to relative battery parameter variations when using the conventional PI control approach. This paper proposes a new control method based on Lyapunov Functions to eliminate this issue. The proposed solution provides a global asymptotic stability at a module level avoiding any instability issue due to parameter variations. A detailed analysis and design of the nonlinear control structure are presented under the distributed sharing control. At last thorough experimental investigations are shown to prove the effectiveness of the proposed control under grid-tie conditions.
Resumo:
There is an emerging application which uses a mixture of batteries within an energy storage system. These hybrid battery solutions may contain different battery types. A DC-side cascaded boost converters along with a module based distributed power sharing strategy has been proposed to cope with variations in battery parameters such as, state-of-charge and/or capacity. This power sharing strategy distributes the total power among the different battery modules according to these battery parameters. Each module controller consists of an outer voltage loop with an inner current loop where the desired control reference for each control loop needs to be dynamically varied according to battery parameters to undertake this sharing. As a result, the designed control bandwidth or stability margin of each module control loop may vary in a wide range which can cause a stability problem within the cascaded converter. This paper reports such a unique issue and thoroughly investigates the stability of the modular converter under the distributed sharing scheme. The paper shows that a cascaded PI control loop approach cannot guarantee the system stability throughout the operating conditions. A detailed analysis of the stability issue and the limitations of the conventional approach are highlighted. Finally in-depth experimental results are presented to prove the stability issue using a modular hybrid battery energy storage system prototype under various operating conditions.
Resumo:
This project has been undertaken for Hamworthy Hydraulics Limited. Its objective was to design and develop a controller package for a variable displacement, hydraulic pump for use mainly on mobile earth moving machinery. A survey was undertaken of control options used in practice and from this a design specification was formulated, the successful implementation of which would give Hamworthy an advantage over its competitors. Two different modes for the controller were envisaged. One consisted of using conventional hydro-mechanics and the other was based upon a microprocessor. To meet short term customer prototype requirements the first section of work was the realisation of the hydro-mechanical system. Mathematical models were made to evaluate controller stability and hence aid their design. The final package met the requirements of the specification and a single version could operate all sizes of variable displacement pumps in the Hamworthy range. The choice of controller options and combinations totalled twenty-four. The hydro-mechanical controller was complex and it was realised that a micro-processor system would allow all options to be implemented with just one design of hardware, thus greatly simplifying production. The final section of this project was to determine whether such a design was feasible. This entailed finding cheap, reliable transducers, using mathematical models to predict electro-hydraulic interface stability, testing such interfaces and finally incorporating a micro-processor in an interactive control loop. The study revealed that such a system was technically possible but it would cost 60% more than its hydro-mechanical counterpart. It was therefore concluded that, in the short term, for the markets considered, the hydro-mechanical design was the better solution. Regarding the micro-processor system the final conclusion was that, because the relative costs of the two systems are decreasing, the electro-hydraulic controller will gradually become more attractive and therefore Hamworthy should continue with its development.
Resumo:
This thesis describes work completed on the application of H controller synthesis to the design of controllers for single axis high speed independent drive design examples. H controller synthesis was used in a single controller format and in a self-tuning regulator, a type of adaptive controller. Three types of industrial design examples were attempted using H controller synthesis, both in simulation and on a Drives Test Facility at Aston University. The results were benchmarked against a Proportional, Integral and Derivative (PID) with velocity feedforward controller (VFF), the industrial standard for this application. An analysis of the differences between a H and PID with VFF controller was completed. A direct-form H controller was determined for a limited class of weighting function and plants which shows the relationship between the weighting function, nominal plant and the controller parameters. The direct-form controller was utilised in two ways. Firstly it allowed the production of simple guidelines for the industrial design of H controllers. Secondly it was used as the controller modifier in a self-tuning regulator (STR). The STR had a controller modification time (including nominal model parameter estimation) of 8ms. A Set-Point Gain Scheduling (SPGS) controller was developed and applied to an industrial design example. The applicability of each control strategy, PID with VFF, H, SPGS and STR, was investigated and a set of general guidelines for their use was determined. All controllers developed were implemented using standard industrial equipment.
Resumo:
A negative input-resistance compensator is designed to stabilize a power electronic brushless dc motor drive with constant power-load characteristics. The strategy is to feed a portion of the changes in the dc-link voltage into the current control loop to modify the system input impedance in the midfrequency range and thereby to damp the input filter. The design process of the compensator and the selection of parameters are described. The impact of the compensator is examined on the motor-controller performance, and finally, the effectiveness of the controller is verified by simulation and experimental testing.
Resumo:
For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results.
Resumo:
We show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, that 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.
Resumo:
We show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, that 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.
Resumo:
Purpose: Pharmacological intervention with peripheral sympathetic transmission at ciliary smooth muscle neuro-receptor junctions has been used against a background of controlled parasympathetic activity to investigate the characteristics of autonomic control of ocular accommodation. Methods: A continuously recording infrared optometer was used to measure accommodation on a group of five visually normal emmetropic subjects under open- and closed-loop conditions. A double-blind protocol between saline, timolol and betaxolol was used to differentiate between the localised action on ciliary smooth muscle and effects induced by changes in stimulus conditions. Data were collected before and 45 min following the instillation of saline, timolol or betaxolol. Open-loop post-task decay was investigated following 3 min sustained near fixation of a stimulus placed 3 D above the subject's pre-task tonic accommodation level. Closed-loop dynamic responses were recorded for each treatment condition while subjects viewed sinusoidally (0.05-0.6 Hz) or stepwise vergence-modulated targets over a 2 D range (2-4 D). Results: Open-loop data demonstrate a rapid post-task regression to pre-task tonic accommodation levels for saline and betaxolol control conditions. A slow positive post-task shift was induced by timolol indicating that sympathetic inhibition contributes to accommodative adaptation during sustained near vision. Closed-loop accommodation responses to temporally modulated sinusoidal stimuli showed characteristic features for both saline and betaxolol control conditions. Timolol induced a reduced gain for low- and mid-temporal frequencies (< 0.3 Hz) but did not affect the response at higher temporal frequencies. Response times to stepwise stimuli increased following the instillation of timolol for the near-to-far fixation condition compared with the controls and was related to the period of sustained prior fixation. Conclusions: Modulation of accommodation under open- and closed-loop conditions by a non-selective β-blocker is consistent with the temporal and inhibitory features of sympathetic innervation to ciliary smooth muscle. Although parasympathetic innervation predominates there is evidence to support a role for sympathetic innervation in the control of ocular accommodation. © 2002 The College of Optometrists.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
The development of an all-optical communications infrastructure requires appropriate optical switching devices and supporting hardware. This thesis presents several novel fibre lasers which are useful pulse sources for high speed optical data processing and communications. They share several attributes in common: flexibility, stability and low-jitter output. They all produce short (picosecond) and are suitable as sources for soliton systems. The lasers are all-fibre systems using erbium-doped fibre for gain, and are actively-modelocked using a dual-wavelength nonlinear optical loop mirror (NOLM) as a modulator. Control over the operating wavelength and intra-cavity dispersion is obtained using a chirped in-fibre Bragg grating.Systems operating both at 76MHz and gigahertz frequencies are presented, the latter using a semiconductor laser amplifier to enhance nonlinear action in the loop mirror. A novel dual-wavelength system in which two linear cavities share a common modulator is presented with results which show that the jitter between the two wavelengths is low enough for use in switching experiments with data rates of up to 130Gbit/s.
Resumo:
The integration of a microprocessor and a medium power stepper motor in one control system brings together two quite different disciplines. Various methods of interfacing are examined and the problems involved in both hardware and software manipulation are investigated. Microprocessor open-loop control of the stepper motor is considered. The possible advantages of microprocessor closed-loop control are examined and the development of a system is detailed. The system uses position feedback to initiate each motor step. Results of the dynamic response of the system are presented and its performance discussed. Applications of the static torque characteristic of the stepper motor are considered followed by a review of methods of predicting the characteristic. This shows that accurate results are possible only when the effects of magnetic saturation are avoided or when the machine is available for magnetic circuit tests to be carried out. A new method of predicting the static torque characteristic is explained in detail. The method described uses the machine geometry and the magnetic characteristics of the iron types used in the machine. From this information the permeance of each iron component of the machine is calculated and by using the equivalent magnetic circuit of the machine, the total torque produced is predicted. It is shown how this new method is implemented on a digital computer and how the model may be used to investigate further aspects of the stepper motor in addition to the static torque.
Resumo:
This thesis describes the investigation of an adaptive method of attenuation control for digital speech signals in an analogue-digital environment and its effects on the transmission performance of a national telecommunication network. The first part gives the design of a digital automatic gain control, able to operate upon a P.C.M. signal in its companded form and whose operation is based upon the counting of peaks of the digital speech signal above certain threshold levels. A study was ma.de of a digital automatic gain control (d.a.g.c.) in open-loop configuration and closed-loop configuration. The former was adopted as the means for carrying out the automatic control of attenuation. It was simulated and tested, both objectively and subjectively. The final part is the assessment of the effects on telephone connections of a d.a.g.c. that introduces gains of 6 dB or 12 dB. This work used a Telephone Connection Assessment Model developed at The University of Aston in Birmingham. The subjective tests showed that the d.a.g.c. gives advantage for listeners when the speech level is very low. The benefit is not great when speech is only a little quieter than preferred. The assessment showed that, when a standard British Telecom earphone is used, insertion of gain is desirable if speech voltage across the earphone terminals is below an upper limit of -38 dBV. People commented upon the presence of an adaptive-like effect during the tests. This could be the reason why they voted against the insertion of gain at level only little quieter than preferred, when they may otherwise have judged it to be desirable. A telephone connection with a d.a.g.c. in has a degree of difficulty less than half of that without it. The score Excellent plus Good is 10-30% greater.