2 resultados para Work Incentive Program (U.S.)
em Aston University Research Archive
Resumo:
To reduce global biodiversity loss, there is an urgent need to determine the most efficient allocation of conservation resources. Recently, there has been a growing trend for many governments to supplement public ownership and management of reserves with incentive programs for conservation on private land. This raises important questions, such as the extent to which private land conservation can improve conservation outcomes, and how it should be mixed with more traditional public land conservation. We address these questions, using a general framework for modelling environmental policies and a case study examining the conservation of endangered native grasslands to the west of Melbourne, Australia. Specifically, we examine three policies that involve i) spending all resources on creating public conservation areas; ii) spending all resources on an ongoing incentive program where private landholders are paid to manage vegetation on their property with 5-year contracts; and iii) splitting resources between these two approaches. The performance of each strategy is quantified with a vegetation condition change model that predicts future changes in grassland quality. Of the policies tested, no one policy was always best and policy performance depended on the objectives of those enacting the policy. Although policies to promote conservation on private land are proposed and implemented in many areas, they are rarely evaluated in terms of their ecological consequences. This work demonstrates a general method for evaluating environmental policies and highlights the utility of a model which combines ecological and socioeconomic processes.
Resumo:
Experimental investigations and computer modelling studies have been made on the refrigerant-water counterflow condenser section of a small air to water heat pump. The main object of the investigation was a comparative study between the computer modelling predictions and the experimental observations for a range of operating conditions but other characteristics of a counterflow heat exchanger are also discussed. The counterflow condenser consisted of 15 metres of a thermally coupled pair of copper pipes, one containing the R12 working fluid and the other water flowing in the opposite direction. This condenser was mounted horizontally and folded into 0.5 metre straight sections. Thermocouples were inserted in both pipes at one metre intervals and transducers for pressure and flow measurement were also included. Data acquisition, storage and analysis was carried out by a micro-computer suitably interfaced with the transducers and thermocouples. Many sets of readings were taken under a variety of conditions, with air temperature ranging from 18 to 26 degrees Celsius, water inlet from 13.5 to 21.7 degrees, R12 inlet temperature from 61.2 to 81.7 degrees and water mass flow rate from 6.7 to 32.9 grammes per second. A Fortran computer model of the condenser (originally prepared by Carrington[1]) has been modified to match the information available from experimental work. This program uses iterative segmental integration over the desuperheating, mixed phase and subcooled regions for the R12 working fluid, the water always being in the liquid phase. Methods of estimating the inlet and exit fluid conditions from the available experimental data have been developed for application to the model. Temperature profiles and other parameters have been predicted and compared with experimental values for the condenser for a range of evaporator conditions and have shown that the model gives a satisfactory prediction of the physical behaviour of a simple counterflow heat exchanger in both single phase and two phase regions.