24 resultados para Wind power plants

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assess the feasibility of hybrid solar-biomass power plants for use in India in various applications including tri-generation, electricity generation and process heat. To cover this breadth of scenarios we analyse, with the help of simulation models, case studies with peak thermal capacities ranging from 2 to 10 MW. Evaluations are made against technical, financial and environmental criteria. Suitable solar multiples, based on the trade-offs among the various criteria, range from 1 to 2.5. Compared to conventional energy sources, levelised energy costs are high - but competitive in comparison to other renewables such as photovoltaic and wind. Long payback periods for hybrid plants mean that they cannot compete directly with biomass-only systems. However, a 1.2-3.2 times increase in feedstock price will result in hybrid systems becoming cost competitive. Furthermore, in comparison to biomass-only, hybrid operation saves up to 29% biomass and land with an 8.3-24.8 $/GJ/a and 1.8-5.2 ¢/kWh increase in cost per exergy loss and levelised energy cost. Hybrid plants will become an increasingly attractive option as the cost of solar thermal falls and feedstock, fossil fuel and land prices continue to rise. In the foreseeable future, solar will continue to rely on subsidies and it is recommended to subsidise preferentially tri-generation plants. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examined solar thermal collectors for use in alternative hybrid solar-biomass power plant applications in Gujarat, India. Following a preliminary review, the cost-effective selection and design of the solar thermal field were identified as critical factors underlying the success of hybrid plants. Consequently, the existing solar thermal technologies were reviewed and ranked for use in India by means of a multi-criteria decision-making method, the Analytical Hierarchy Process (AHP). Informed by the outcome of the AHP, the thesis went on to pursue the Linear Fresnel Reflector (LFR), the design of which was optimised with the help of ray-tracing. To further enhance collector performance, LFR concepts incorporating novel mirror spacing and drive mechanisms were evaluated. Subsequently, a new variant, termed the Elevation Linear Fresnel Reflector (ELFR) was designed, constructed and tested at Aston University, UK, therefore allowing theoretical models for the performance of a solar thermal field to be verified. Based on the resulting characteristics of the LFR, and data gathered for the other hybrid system components, models of hybrid LFR- and ELFR-biomass power plants were developed and analysed in TRNSYS®. The techno-economic and environmental consequences of varying the size of the solar field in relation to the total plant capacity were modelled for a series of case studies to evaluate different applications: tri-generation (electricity, ice and heat), electricity-only generation, and process heat. The case studies also encompassed varying site locations, capacities, operational conditions and financial situations. In the case of a hybrid tri-generation plant in Gujarat, it was recommended to use an LFR solar thermal field of 14,000 m2 aperture with a 3 tonne biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR increased saving of biomass (100 t/a) and land (9 ha/a). For solar thermal applications in areas with high land cost, the ELFR reduced levelised energy costs. It was determined that off-grid hybrid plants for tri-generation were the most feasible application in India. Whereas biomass-only plants were found to be more economically viable, it was concluded that hybrid systems will soon become cost competitive and can considerably improve current energy security and biomass supply chain issues in India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the impact of load factor, facility and generator types on the productivity of Korean electric power plants. In order to capture important differences in the effect of load policy on power output, we use a semiparametric smooth coefficient (SPSC) model that allows us to model heterogeneous performances across power plants and over time by allowing underlying technologies to be heterogeneous. The SPSC model accommodates both continuous and discrete covariates. Various specification tests are conducted to compare performance of the SPSC model. Using a unique generator level panel dataset spanning the period 1995-2006, we find that the impact of load factor, generator and facility types on power generation varies substantially in terms of magnitude and significance across different plant characteristics. The results have strong implication for generation policy in Korea as outlined in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since wind at the earth's surface has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safe and economic use of wind energy. In this paper, we investigated a combination of numeric and probabilistic models: a Gaussian process (GP) combined with a numerical weather prediction (NWP) model was applied to wind-power forecasting up to one day ahead. First, the wind-speed data from NWP was corrected by a GP, then, as there is always a defined limit on power generated in a wind turbine due to the turbine controlling strategy, wind power forecasts were realized by modeling the relationship between the corrected wind speed and power output using a censored GP. To validate the proposed approach, three real-world datasets were used for model training and testing. The empirical results were compared with several classical wind forecast models, and based on the mean absolute error (MAE), the proposed model provides around 9% to 14% improvement in forecasting accuracy compared to an artificial neural network (ANN) model, and nearly 17% improvement on a third dataset which is from a newly-built wind farm for which there is a limited amount of training data. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the impact of load factor, facility and generator types on the productivity of Korean electric power plants. In order to capture important differences in the effect of load policy on power output, we use a semiparametric smooth coefficient (SPSC) model that allows us to model heterogeneous performances across power plants and over time by allowing underlying technologies to be heterogeneous. The SPSC model accommodates both continuous and discrete covariates. Various specification tests are conducted to assess the performance of the SPSC model. Using a unique generator level panel dataset spanning the period 1995-2006, we find that the impact of load factor, generator and facility types on power generation varies substantially in terms of magnitude and significance across different plant characteristics. The results have strong implications for generation policy in Korea as outlined in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since wind has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safety and economics of wind energy utilization. In this paper, we investigate a combination of numeric and probabilistic models: one-day-ahead wind power forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical Weather Prediction (NWP) model. Firstly the wind speed data from NWP was corrected by a GP. Then, as there is always a defined limit on power generated in a wind turbine due the turbine controlling strategy, a Censored GP was used to model the relationship between the corrected wind speed and power output. To validate the proposed approach, two real world datasets were used for model construction and testing. The simulation results were compared with the persistence method and Artificial Neural Networks (ANNs); the proposed model achieves about 11% improvement in forecasting accuracy (Mean Absolute Error) compared to the ANN model on one dataset, and nearly 5% improvement on another.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporating Material Balance Principle (MBP) in industrial and agricultural performance measurement systems with pollutant factors has been on the rise in recent years. Many conventional methods of performance measurement have proven incompatible with the material flow conditions. This study will address the issue of eco-efficiency measurement adjusted for pollution, taking into account materials flow conditions and the MBP requirements, in order to provide ‘real’ measures of performance that can serve as guides when making policies. We develop a new approach by integrating slacks-based measure to enhance the Malmquist Luenberger Index by a material balance condition that reflects the conservation of matter. This model is compared with a similar model, which incorporates MBP using the trade-off approach to measure productivity and eco-efficiency trends of power plants. Results reveal similar findings for both models substantiating robustness and applicability of the proposed model in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PMSG-based wind power generation system protection is presented in this paper. For large-scale systems, a voltagesource converter rectifier is included. Protection circuits for this topology are studied with simulation results for cable permanent fault conditions. These electrical protection methods are all in terms of dumping redundant energy resulting from disrupted path of power delivery. Pitch control of large-scale wind turbines are considered for effectively reducing rotor shaft overspeed. Detailed analysis and calculation of damping power and resistances are presented. Simulation results including fault overcurrent, DC-link overvoltage and wind turbine overspeed are shown to illustrate the system responses under different protection schemes to compare their application and effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-power and high-voltage gain dc-dc converters are key to high-voltage direct current (HVDC) power transmission for offshore wind power. This paper presents an isolated ultra-high step-up dc-dc converter in matrix transformer configuration. A flyback-forward converter is adopted as the power cell and the secondary side matrix connection is introduced to increase the power level and to improve fault tolerance. Because of the modular structure of the converter, the stress on the switching devices is decreased and so is the transformer size. The proposed topology can be operated in column interleaved modes, row interleaved modes, and hybrid working modes in order to deal with the varying energy from the wind farm. Furthermore, fault-tolerant operation is also realized in several fault scenarios. A 400-W dc-dc converter with four cells is developed and experimentally tested to validate the proposed technique, which can be applied to high-power high-voltage dc power transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main objectives in restructuring power industry is enhancing the efficiency of power facilities. However, power generation industry, which plays a key role in the power industry, has a noticeable share in emission amongst all other emission-generating sectors. In this study, we have developed some new Data Envelopment Analysis models to find efficient power plants based on less fuel consumption, combusting less polluting fuel types, and incorporating emission factors in order to measure the ecological efficiency trend. We then applied these models to measuring eco-efficiency during an eight-year period of power industry restructuring in Iran. Results reveal that there has been a significant improvement in eco-efficiency, cost efficiency and allocative efficiency of the power plants during the restructuring period. It is also shown that despite the hydro power plants look eco-efficient; the combined cycle ones have been more allocative efficient than the other power generation technologies used in Iran.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A DSP implementation of Space Vector PWM (SVPWM) using constant V/Hz control for the open winding doubly-fed generator is proposed. This control of SVPWM modulation mode and open winding structure combination has the high voltage utilization ratio, greatly improves the control precision of the system, and reduces the stator winding output current distortion rate, though the complexity of the system is increased. This paper describes the basic principle of SVPWM and discusses the particularity of SVPWM waveform generated by hybrid vector under the condition of open winding. This method is applied to a state of doubly-fed wind power generator. The experimental verification shows that this control method can make the output voltage amplitude of the doubly-fed induction generator be 380V and the frequency be 50Hz by using of TMS32028335 chip based on constant V/Hz control of symmetric SVPWM modulation wave.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new open-winding control strategy is proposed for a brushless doubly-fed reluctance generator (BDFRG) applicable for wind turbines. The BDFRG control winding is fed via a dual two-level three-phase converter using a single dc bus. Direct power control based on maximum power point tracking with common mode voltage elimination is designed, which not only the active and reactive power is decoupled, but the reliability and redundancy are all improved greatly by increasing the switching modes of operation, while DC-link voltage and rating of power devices decreased by 50% comparing to the traditional three-level converter systems. Consequently its effectiveness is evaluated by simulation tests based on a 42-kW prototype generator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel open-winding brushless doubly-fed generator (BDFG) system with two two-level bidirectional converters is proposed. This topology is equivalent to a three-level bidirectional converter connected to the typical BDFG, but solves the unbalanced-voltage-division problem of DC capacitor in the three-level converter, and has lower converter capacity, more flexible control mode, and better fault-tolerant ability. The direct power control (DPC) based on the twelve sections is adopted to implement the power tracking of the open-winding BDFG system, which is compared with the typical BDFG DPC system based on the six and twelve sections to verify the advantages of the proposed scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although maximum power point tracking (MPPT) is crucial in the design of a wind power generation system, the necessary control strategies should also be considered for conditions that require a power reduction, called de-loading in this paper. A coordinated control scheme for a proposed current source converter (CSC) based DC wind energy conversion system is presented in this paper. This scheme combines coordinated control of the pitch angle, a DC load dumping chopper and the DC/DC converter, to quickly achieve wind farm de-loading. MATLAB/Simulink simulations and experiments are used to validate the purpose and effectiveness of the control scheme, both at the same power level. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Measuring variations in efficiency and its extension, eco-efficiency, during a restructuring period in different industries has always been a point of interest for regulators and policy makers. This paper assesses the impacts of restructuring of procurement in the Iranian power industry on the performance of power plants. We introduce a new slacks-based model for Malmquist-Luenberger (ML) Index measurement and apply it to the power plants to calculate the efficiency, eco-efficiency, and technological changes over the 8-year period (2003-2010) of restructuring in the power industry. The results reveal that although the restructuring had different effects on the individual power plants, the overall growth in the eco-efficiency of the sector was mainly due to advances in pure technology. We also assess the correlation between efficiency and eco-efficiency of the power plants, which indicates a close relationship between these two steps, thus lending support to the incorporation of environmental factors in efficiency analysis. © 2014 Elsevier Ltd.