29 resultados para Wideband Receivers
em Aston University Research Archive
Resumo:
Onset asynchrony is arguably the most powerful grouping cue for the separation of temporally overlapping sounds (see Bregman 1990). A component that begins only 30–50 ms before the others makes a greatly reduced contribution to the timbre of a complex tone, or to the phonetic quality of a vowel (e.g. Darwin 1984). This effect of onset asynchrony does not necessarily imply a cognitive grouping process; instead it may result from peripheral adaptation in the response to the leading component in the few tens of milliseconds before the other components begin (e.g., Westerman and Smith 1984). However, two findings suggest that the effect of onset asynchrony cannot be explained entirely by peripheral adaptation. First, though the effect is smaller, the contribution of a component to the phonetic quality of a short-duration vowel is reduced when it ends after the other components (Darwin and Sutherland 1984; Roberts and Moore 1991).
Resumo:
Onset asynchrony is an important cue for segregating sound mixtures. A harmonic of a vowel that begins before the other components contributes less to vowel quality. This asynchrony effect can be partly reversed by accompanying the leading portion of the harmonic with an octave-higher captor tone. The original interpretation was that the captor and leading portion formed a perceptual group, but it has recently been shown that the captor effect depends on neither a common onset time nor harmonic relations with the leading portion. Instead, it has been proposed that the captor effect depends on wideband inhibition in the central auditory system. Physiological evidence suggests that such inhibition occurs both within and across ears. Experiment 1 compared the efficacy of a pure-tone captor presented in the same or opposite ear to the vowel and leading harmonic. Contralateral presentation was at least as effective as ipsilateral presentation. Experiment 2 used multicomponent captors in a more comprehensive evaluation of harmonic influences on captor efficacy. Three captors with different fundamental frequencies were used, one of which formed a consecutive harmonic series with the leading harmonic. All captors were equally effective, irrespective of the harmonic relationship. These findings support and refine the inhibitory account. © 2007 Acoustical Society of America.
Resumo:
A fibre Bragg grating filter device, tunable over 45 nm, is reported. The device has a wavelength setting time below 1.5 ms and a maximum tuning speed of 21 nm/ns.
Resumo:
We propose and demonstrate novel virtual Gires–Tournois (GT) etalons based on fiber gratings. By introducing an additional phase modulation in wideband linearly chirped fiber Bragg gratings, we have successfully generated GT resonance with only one grating. This technique can simplify the fabrication procedure while retaining the normal advantages of distributed etalons, including their full compatibility with optical fiber, low insertion loss, and low cost. Such etalons can be used as dispersion compensation devices in optical transmission systems.
Resumo:
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1–3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4–6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 mm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11–16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 mm, and then use it to demonstrate a 2.4 ps Er31-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.
Resumo:
We propose and demonstrate novel virtual Gires-Tournois (GT) etalons based on fiber gratings. By introducing an additional phase modulation in wideband linearly chirped fiber Bragg gratings, we have successfully generated GT resonance with only one grating. This technique can simplify the fabrication procedure while retaining the normal advantages of distributed etalons, including their full compatibility with optical fiber, low insertion loss, and low cost. Such etalons can be used as dispersion compensation devices in optical transmission systems. © 2007 Optical Society of America.
Resumo:
Photonic signal processing is used to implement common mode signal cancellation across a very wide bandwidth utilising phase modulation of radio frequency (RF) signals onto a narrow linewidth laser carrier. RF spectra were observed using narrow-band, tunable optical filtering using a scanning Fabry Perot etalon. Thus functions conventionally performed using digital signal processing techniques in the electronic domain have been replaced by analog techniques in the photonic domain. This technique was able to observe simultaneous cancellation of signals across a bandwidth of 1400 MHz, limited only by the free spectral range of the etalon. © 2013 David M. Benton.
Resumo:
A compact Θ shaped microfiber resonator for multifunctional, tunable and wideband filter is proposed. The filtering performance of reflection and transmission spectra depending on coupling coefficients and cavity length is theoretically investigated and experimentally demonstrated. © 2015 OSA.
Resumo:
Iterative multiuser joint decoding based on exact Belief Propagation (BP) is analyzed in the large system limit by means of the replica method. It is shown that performance can be improved by appropriate power assignment to the users. The optimum power assignment can be found by linear programming in most technically relevant cases. The performance of BP iterative multiuser joint decoding is compared to suboptimum approximations based on Interference Cancellation (IC). While IC receivers show a significant loss for equal-power users, they yield performance close to BP under optimum power assignment.
Resumo:
Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases. © 2007 IOP Publishing Ltd.
Resumo:
We propose to exploit a self-focusing effect in the atmosphere to assist delivering powerful laser beams from orbit to the ground. We demonstrate through numerical modeling that when the self-focusing length is comparable with the atmosphere height the spot size on the ground can be reduced well below the diffraction limits without beam quality degradation. The density variation suppresses beam filamentation and provides the self-focusing of the beam as a whole. The use of light self-focusing in the atmosphere can greatly relax the requirements for the orbital optics and ground receivers.
Resumo:
Internal branding is increasingly seen as a doctrine to ensure employees’ delivery of the brand promise by shaping employees’ brand attitudes and behaviours. However, few studies, if any, have been conducted to understand the internal branding process from the viewpoint of employees who are the end receivers. Therefore, this study aims at exploring employees’ perceptions toward the internal branding process. It identifies the relevant mechanisms and describes how internal branding affected service employees. The challenges of its success are uncovered and discussed. Finally, managerial implications and future research directions are provided.
Resumo:
We demonstrate, for the first time to our knowledge, regeneration of a 42.66-Gb/s differential phase-shift keyed signal using a dual-pump nondegenerate four-wave-mixing-based fiber-optic parametric amplifier. The regenerative performance of the subsystem is characterized in terms of bit-error rate against narrowband and wideband introduced noise. While a strong receiver sensitivity improvement, up to 20 dB, is noticed against narrowband noise, against quasi-random (wideband) noise we observe a regeneration of 2.7 dB.
Resumo:
Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities(1,2). Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field(3) more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance-nonlinear phase noise(4,5). Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.
Resumo:
With the rebirth of coherent detection, various algorithms have come forth to alleviate phase noise, one of the main impairments for coherent receivers. These algorithms provide stable compensation, however they limit the DSP. With this key issue in mind, Fabry Perot filter based self coherent optical OFDM was analyzed which does not require phase noise compensation reducing the complexity in DSP at low OSNR. However, the performance of such a receiver is limited due to ASE noise at the carrier wavelength, especially since an optical amplifier is typically employed with the filter to ensure sufficient carrier power. Subsequently, the use of an injection-locked laser (ILL) to retrieve the frequency and phase information from the extracted carrier without the use of an amplifier was recently proposed. In ILL based system, an optical carrier is sent along with the OFDM signal in the transmitter. At the receiver, the carrier is extracted from the OFDM signal using a Fabry-Perot tunable filter and an ILL is used to significantly amplify the carrier and reduce intensity and phase noise. In contrast to CO-OFDM, such a system supports low-cost broad linewidth lasers and benefits with lower complexity in the DSP as no carrier frequency estimation and correction along with phase noise compensation is required.