35 resultados para Well-Posed Optimization Problems

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic Optimization Problems (DOPs) have been widely studied using Evolutionary Algorithms (EAs). Yet, a clear and rigorous definition of DOPs is lacking in the Evolutionary Dynamic Optimization (EDO) community. In this paper, we propose a unified definition of DOPs based on the idea of multiple-decision-making discussed in the Reinforcement Learning (RL) community. We draw a connection between EDO and RL by arguing that both of them are studying DOPs according to our definition of DOPs. We point out that existing EDO or RL research has been mainly focused on some types of DOPs. A conceptualized benchmark problem, which is aimed at the systematic study of various DOPs, is then developed. Some interesting experimental studies on the benchmark reveal that EDO and RL methods are specialized in certain types of DOPs and more importantly new algorithms for DOPs can be developed by combining the strength of both EDO and RL methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inverse problem of determining a spacewise dependent heat source, together with the initial temperature for the parabolic heat equation, using the usual conditions of the direct problem and information from two supplementary temperature measurements at different instants of time is studied. These spacewise dependent temperature measurements ensure that this inverse problem has a unique solution, despite the solution being unstable, hence the problem is ill-posed. We propose an iterative algorithm for the stable reconstruction of both the initial data and the source based on a sequence of well-posed direct problems for the parabolic heat equation, which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterations at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented for a typical benchmark test example, which has the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure gives accurate numerical approximations in relatively few iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inverse problem of determining a spacewise-dependent heat source for the parabolic heat equation using the usual conditions of the direct problem and information from one supplementary temperature measurement at a given instant of time is studied. This spacewise-dependent temperature measurement ensures that this inverse problem has a unique solution, but the solution is unstable and hence the problem is ill-posed. We propose a variational conjugate gradient-type iterative algorithm for the stable reconstruction of the heat source based on a sequence of well-posed direct problems for the parabolic heat equation which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterative procedure at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented which have the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure yields stable and accurate numerical approximations after only a few iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the inverse problem of determining a spacewise dependent heat source in the parabolic heat equation using the usual conditions of the direct problem and information from a supplementary temperature measurement at a given single instant of time. The spacewise dependent temperature measurement ensures that the inverse problem has a unique solution, but this solution is unstable, hence the problem is ill-posed. For this inverse problem, we propose an iterative algorithm based on a sequence of well-posed direct problems which are solved at each iteration step using the boundary element method (BEM). The instability is overcome by stopping the iterations at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented for various typical benchmark test examples which have the input measured data perturbed by increasing amounts of random noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for the parabolic Cauchy problem in planar domains having a finite number of corners is implemented based on boundary integral equations. At each iteration, mixed well-posed problems are solved for the same parabolic operator. The presence of corner points renders singularities of the solutions to these mixed problems, and this is handled with the use of weight functions together with, in the numerical implementation, mesh grading near the corners. The mixed problems are reformulated in terms of boundary integrals obtained via discretization of the time-derivative to obtain an elliptic system of partial differential equations. To numerically solve these integral equations a Nyström method with super-algebraic convergence order is employed. Numerical results are presented showing the feasibility of the proposed approach. © 2014 IMACS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A formalism for modelling the dynamics of Genetic Algorithms (GAs) using methods from statistical mechanics, originally due to Prugel-Bennett and Shapiro, is reviewed, generalized and improved upon. This formalism can be used to predict the averaged trajectory of macroscopic statistics describing the GA's population. These macroscopics are chosen to average well between runs, so that fluctuations from mean behaviour can often be neglected. Where necessary, non-trivial terms are determined by assuming maximum entropy with constraints on known macroscopics. Problems of realistic size are described in compact form and finite population effects are included, often proving to be of fundamental importance. The macroscopics used here are cumulants of an appropriate quantity within the population and the mean correlation (Hamming distance) within the population. Including the correlation as an explicit macroscopic provides a significant improvement over the original formulation. The formalism is applied to a number of simple optimization problems in order to determine its predictive power and to gain insight into GA dynamics. Problems which are most amenable to analysis come from the class where alleles within the genotype contribute additively to the phenotype. This class can be treated with some generality, including problems with inhomogeneous contributions from each site, non-linear or noisy fitness measures, simple diploid representations and temporally varying fitness. The results can also be applied to a simple learning problem, generalization in a binary perceptron, and a limit is identified for which the optimal training batch size can be determined for this problem. The theory is compared to averaged results from a real GA in each case, showing excellent agreement if the maximum entropy principle holds. Some situations where this approximation brakes down are identified. In order to fully test the formalism, an attempt is made on the strong sc np-hard problem of storing random patterns in a binary perceptron. Here, the relationship between the genotype and phenotype (training error) is strongly non-linear. Mutation is modelled under the assumption that perceptron configurations are typical of perceptrons with a given training error. Unfortunately, this assumption does not provide a good approximation in general. It is conjectured that perceptron configurations would have to be constrained by other statistics in order to accurately model mutation for this problem. Issues arising from this study are discussed in conclusion and some possible areas of further research are outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate two numerical procedures for the Cauchy problem in linear elasticity, involving the relaxation of either the given boundary displacements (Dirichlet data) or the prescribed boundary tractions (Neumann data) on the over-specified boundary, in the alternating iterative algorithm of Kozlov et al. (1991). The two mixed direct (well-posed) problems associated with each iteration are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method, while the optimal value of the regularization parameter is chosen via the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The MFS-based iterative algorithms with relaxation are tested for Cauchy problems for isotropic linear elastic materials in various geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of reconstruction of the temperature from knowledge of the temperature and heat flux on a part of the boundary of a bounded planar domain containing corner points. An iterative method is proposed involving the solution of mixed boundary value problems for the heat equation (with time-dependent conductivity). These mixed problems are shown to be well-posed in a weighted Sobolev space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative procedure is proposed for the reconstruction of a temperature field from a linear stationary heat equation with stochastic coefficients, and stochastic Cauchy data given on a part of the boundary of a bounded domain. In each step, a series of mixed well-posed boundary-value problems are solved for the stochastic heat operator and its adjoint. Well-posedness of these problems is shown to hold and convergence in the mean of the procedure is proved. A discretized version of this procedure, based on a Monte Carlo Galerkin finite-element method, suitable for numerical implementation is discussed. It is demonstrated that the solution to the discretized problem converges to the continuous as the mesh size tends to zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Cauchy problem for the heat equation, where the temperature field is to be reconstructed from the temperature and heat flux given on a part of the boundary of the solution domain. We employ a Landweber type method proposed in [2], where a sequence of mixed well-posed problems are solved at each iteration step to obtain a stable approximation to the original Cauchy problem. We develop an efficient boundary integral equation method for the numerical solution of these mixed problems, based on the method of Rothe. Numerical examples are presented both with exact and noisy data, showing the efficiency and stability of the proposed procedure and approximations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative procedure is proposed for the reconstruction of a stationary temperature field from Cauchy data given on a part of the boundary of a bounded plane domain where the boundary is smooth except for a finite number of corner points. In each step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. Convergence is proved in a weighted L2-space. Numerical results are included which show that the procedure gives accurate and stable approximations in relatively few iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative procedure for determining temperature fields from Cauchy data given on a part of the boundary is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L2-space is included, as well as a stopping criteria for the case of noisy data. Moreover, a solvability result in a weighted Sobolev space for a parabolic initial boundary value problem of second order with mixed boundary conditions is presented. Regularity of the solution is proved. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)