27 resultados para Web service
em Aston University Research Archive
Resumo:
INTAMAP is a web processing service for the automatic interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the open geospatial consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an open source solution. The system couples the 52-North web processing service, accepting data in the form of an observations and measurements (O&M) document with a computing back-end realized in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a new markup language to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropies and extreme values. In the light of the INTAMAP experience, we discuss the lessons learnt.
Resumo:
Interpolated data are an important part of the environmental information exchange as many variables can only be measured at situate discrete sampling locations. Spatial interpolation is a complex operation that has traditionally required expert treatment, making automation a serious challenge. This paper presents a few lessons learnt from INTAMAP, a project that is developing an interoperable web processing service (WPS) for the automatic interpolation of environmental data using advanced geostatistics, adopting a Service Oriented Architecture (SOA). The “rainbow box” approach we followed provides access to the functionality at a whole range of different levels. We show here how the integration of open standards, open source and powerful statistical processing capabilities allows us to automate a complex process while offering users a level of access and control that best suits their requirements. This facilitates benchmarking exercises as well as the regular reporting of environmental information without requiring remote users to have specialized skills in geostatistics.
Resumo:
INTAMAP is a Web Processing Service for the automatic spatial interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the Open Geospatial Consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an integrated, open source solution. The system couples an open-source Web Processing Service (developed by 52°North), accepting data in the form of standardised XML documents (conforming to the OGC Observations and Measurements standard) with a computing back-end realised in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a markup language designed to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropy, extreme values, and data with known error distributions. Besides a fully automatic mode, the system can be used with different levels of user control over the interpolation process.
Resumo:
Semantic Web Service, one of the most significant research areas within the Semantic Web vision, has attracted increasing attention from both the research community and industry. The Web Service Modelling Ontology (WSMO) has been proposed as an enabling framework for the total/partial automation of the tasks (e.g., discovery, selection, composition, mediation, execution, monitoring, etc.) involved in both intra- and inter-enterprise integration of Web services. To support the standardisation and tool support of WSMO, a formal model of the language is highly desirable. As several variants of WSMO have been proposed by the WSMO community, which are still under development, the syntax and semantics of WSMO should be formally defined to facilitate easy reuse and future development. In this paper, we present a formal Object-Z formal model of WSMO, where different aspects of the language have been precisely defined within one unified framework. This model not only provides a formal unambiguous model which can be used to develop tools and facilitate future development, but as demonstrated in this paper, can be used to identify and eliminate errors present in existing documentation.
Resumo:
This research is investigating the claim that Change Data Capture (CDC) technologies capture data changes in real-time. Based on theory, our hypothesis states that real-time CDC is not achievable with traditional approaches (log scanning, triggers and timestamps). Traditional approaches to CDC require a resource to be polled, which prevents true real-time CDC. We propose an approach to CDC that encapsulates the data source with a set of web services. These web services will propagate the changes to the targets and eliminate the need for polling. Additionally we propose a framework for CDC technologies that allow changes to flow from source to target. This paper discusses current CDC technologies and presents the theory about why they are unable to deliver changes in real-time. Following, we discuss our web service approach to CDC and accompanying framework, explaining how they can produce real-time CDC. The paper concludes with a discussion on the research required to investigate the real-time capabilities of CDC technologies. © 2010 IEEE.
Resumo:
Models are central tools for modern scientists and decision makers, and there are many existing frameworks to support their creation, execution and composition. Many frameworks are based on proprietary interfaces, and do not lend themselves to the integration of models from diverse disciplines. Web based systems, or systems based on web services, such as Taverna and Kepler, allow composition of models based on standard web service technologies. At the same time the Open Geospatial Consortium has been developing their own service stack, which includes the Web Processing Service, designed to facilitate the executing of geospatial processing - including complex environmental models. The current Open Geospatial Consortium service stack employs Extensible Markup Language as a default data exchange standard, and widely-used encodings such as JavaScript Object Notation can often only be used when incorporated with Extensible Markup Language. Similarly, no successful engagement of the Web Processing Service standard with the well-supported technologies of Simple Object Access Protocol and Web Services Description Language has been seen. In this paper we propose a pure Simple Object Access Protocol/Web Services Description Language processing service which addresses some of the issues with the Web Processing Service specication and brings us closer to achieving a degree of interoperability between geospatial models, and thus realising the vision of a useful 'model web'.
Resumo:
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.
Resumo:
This thesis provides a set of tools for managing uncertainty in Web-based models and workflows.To support the use of these tools, this thesis firstly provides a framework for exposing models through Web services. An introduction to uncertainty management, Web service interfaces,and workflow standards and technologies is given, with a particular focus on the geospatial domain.An existing specification for exposing geospatial models and processes, theWeb Processing Service (WPS), is critically reviewed. A processing service framework is presented as a solutionto usability issues with the WPS standard. The framework implements support for Simple ObjectAccess Protocol (SOAP), Web Service Description Language (WSDL) and JavaScript Object Notation (JSON), allowing models to be consumed by a variety of tools and software. Strategies for communicating with models from Web service interfaces are discussed, demonstrating the difficultly of exposing existing models on the Web. This thesis then reviews existing mechanisms for uncertainty management, with an emphasis on emulator methods for building efficient statistical surrogate models. A tool is developed to solve accessibility issues with such methods, by providing a Web-based user interface and backend to ease the process of building and integrating emulators. These tools, plus the processing service framework, are applied to a real case study as part of the UncertWeb project. The usability of the framework is proved with the implementation of aWeb-based workflow for predicting future crop yields in the UK, also demonstrating the abilities of the tools for emulator building and integration. Future directions for the development of the tools are discussed.
Resumo:
The field of Semantic Web Services (SWS) has been recognized as one of the most promising areas of emergent research within the Semantic Web initiative, exhibiting an extensive commercial potential and attracting significant attention from both industry and the research community. Currently, there exist several different frameworks and languages for formally describing a Web Service: Web Ontology Language for Services (OWL-S), Web Service Modelling Ontology (WSMO) and Semantic Annotations for the Web Services Description Language (SAWSDL) are the most important approaches. To the inexperienced user, choosing the appropriate platform for a specific SWS application may prove to be challenging, given a lack of clear separation between the ideas promoted by the associated research communities. In this paper, we systematically compare OWL-S, WSMO and SAWSDL from various standpoints, namely, that of the service requester and provider as well as the broker-based view. The comparison is meant to help users to better understand the strengths and limitations of these different approaches to formalizing SWS, and to choose the most suitable solution for a given application. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
The field of Semantic Web Services (SWS) has been recognized as one of the most promising areas of emergent research within the Semantic Web (SW) initiative, exhibiting an extensive commercial potential, and attracting significant attention from both industry and the research community. Currently, there exist several different frameworks and languages for formally describing a Web Service: OWL-S (Web Ontology Language for Services), WSMO (Web Service Modeling Ontology) and SAWSDL (Semantic Annotations for the Web Services Description Language) are the most important approaches. To the inexperienced user, choosing the appropriate paradigm for a specific SWS application may prove to be challenging, given a lack of clear separation between the ideas promoted by the associated research communities. In this paper, we systematically compare OWL-S, WSMO and SAWSDL from various standpoints, namely that of the service requester and provider as well as the broker based view. The comparison is meant to help users to better understand the strengths and limitations of these different approaches to formalising SWS, and to choose the most suitable solution for a given use case. © 2013 IEEE.
Resumo:
Traditionally, geostatistical algorithms are contained within specialist GIS and spatial statistics software. Such packages are often expensive, with relatively complex user interfaces and steep learning curves, and cannot be easily integrated into more complex process chains. In contrast, Service Oriented Architectures (SOAs) promote interoperability and loose coupling within distributed systems, typically using XML (eXtensible Markup Language) and Web services. Web services provide a mechanism for a user to discover and consume a particular process, often as part of a larger process chain, with minimal knowledge of how it works. Wrapping current geostatistical algorithms with a Web service layer would thus increase their accessibility, but raises several complex issues. This paper discusses a solution to providing interoperable, automatic geostatistical processing through the use of Web services, developed in the INTAMAP project (INTeroperability and Automated MAPping). The project builds upon Open Geospatial Consortium standards for describing observations, typically used within sensor webs, and employs Geography Markup Language (GML) to describe the spatial aspect of the problem domain. Thus the interpolation service is extremely flexible, being able to support a range of observation types, and can cope with issues such as change of support and differing error characteristics of sensors (by utilising descriptions of the observation process provided by SensorML). XML is accepted as the de facto standard for describing Web services, due to its expressive capabilities which allow automatic discovery and consumption by ‘naive’ users. Any XML schema employed must therefore be capable of describing every aspect of a service and its processes. However, no schema currently exists that can define the complex uncertainties and modelling choices that are often present within geostatistical analysis. We show a solution to this problem, developing a family of XML schemata to enable the description of a full range of uncertainty types. These types will range from simple statistics, such as the kriging mean and variances, through to a range of probability distributions and non-parametric models, such as realisations from a conditional simulation. By employing these schemata within a Web Processing Service (WPS) we show a prototype moving towards a truly interoperable geostatistical software architecture.
Resumo:
The evaluation of geospatial data quality and trustworthiness presents a major challenge to geospatial data users when making a dataset selection decision. The research presented here therefore focused on defining and developing a GEO label – a decision support mechanism to assist data users in efficient and effective geospatial dataset selection on the basis of quality, trustworthiness and fitness for use. This thesis thus presents six phases of research and development conducted to: (a) identify the informational aspects upon which users rely when assessing geospatial dataset quality and trustworthiness; (2) elicit initial user views on the GEO label role in supporting dataset comparison and selection; (3) evaluate prototype label visualisations; (4) develop a Web service to support GEO label generation; (5) develop a prototype GEO label-based dataset discovery and intercomparison decision support tool; and (6) evaluate the prototype tool in a controlled human-subject study. The results of the studies revealed, and subsequently confirmed, eight geospatial data informational aspects that were considered important by users when evaluating geospatial dataset quality and trustworthiness, namely: producer information, producer comments, lineage information, compliance with standards, quantitative quality information, user feedback, expert reviews, and citations information. Following an iterative user-centred design (UCD) approach, it was established that the GEO label should visually summarise availability and allow interrogation of these key informational aspects. A Web service was developed to support generation of dynamic GEO label representations and integrated into a number of real-world GIS applications. The service was also utilised in the development of the GEO LINC tool – a GEO label-based dataset discovery and intercomparison decision support tool. The results of the final evaluation study indicated that (a) the GEO label effectively communicates the availability of dataset quality and trustworthiness information and (b) GEO LINC successfully facilitates ‘at a glance’ dataset intercomparison and fitness for purpose-based dataset selection.
Resumo:
Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.
Resumo:
An interoperable web processing service (WPS) for the automatic interpolation of environmental data has been developed in the frame of the INTAMAP project. In order to assess the performance of the interpolation method implemented, a validation WPS has also been developed. This validation WPS can be used to perform leave one out and K-fold cross validation: a full dataset is submitted and a range of validation statistics and diagnostic plots (e.g. histograms, variogram of residuals, mean errors) is received in return. This paper presents the architecture of the validation WPS and a case study is used to briefly illustrate its use in practice. We conclude with a discussion on the current limitations of the system and make proposals for further developments.