54 resultados para Web Semantico semantic open data geoSPARQL

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disasters cause widespread harm and disrupt the normal functioning of society, and effective management requires the participation and cooperation of many actors. While advances in information and networking technology have made transmission of data easier than it ever has been before, communication and coordination of activities between actors remain exceptionally difficult. This paper employs semantic web technology and Linked Data principles to create a network of intercommunicating and inter-dependent on-line sites for managing resources. Each site publishes available resources openly and a lightweight opendata protocol is used to request and respond to requests for resources between sites in the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTAMAP is a web processing service for the automatic interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the open geospatial consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an open source solution. The system couples the 52-North web processing service, accepting data in the form of an observations and measurements (O&M) document with a computing back-end realized in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a new markup language to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropies and extreme values. In the light of the INTAMAP experience, we discuss the lessons learnt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensible Business Reporting Language (XBRL) is being adopted by European regulators as a data standard for the exchange of business information. This paper examines the approach of XBRL International (XII) to the meta-data standard's development and diffusion. We theorise the development of XBRL using concepts drawn from a model of successful open source projects. Comparison of the open source model to XBRL enables us to identify a number of interesting similarities and differences. In common with open source projects, the benefits and progress of XBRL have been overstated and 'hyped' by enthusiastic participants. While XBRL is an open data standard in terms of access to the equivalent of its 'source code' we find that the governance structure of the XBRL consortium is significantly different to a model open source approach. The barrier to participation that is created by requiring paid membership and a focus on transacting business at physical conferences and meetings is identified as particularly critical. Decisions about the technical structure of XBRL, the regulator-led pattern of adoption and the organisation of XII are discussed. Finally areas for future research are identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework called joint sentiment-topic (JST) model based on latent Dirichlet allocation (LDA), which detects sentiment and topic simultaneously from text. A reparameterized version of the JST model called Reverse-JST, obtained by reversing the sequence of sentiment and topic generation in the modeling process, is also studied. Although JST is equivalent to Reverse-JST without a hierarchical prior, extensive experiments show that when sentiment priors are added, JST performs consistently better than Reverse-JST. Besides, unlike supervised approaches to sentiment classification which often fail to produce satisfactory performance when shifting to other domains, the weakly supervised nature of JST makes it highly portable to other domains. This is verified by the experimental results on data sets from five different domains where the JST model even outperforms existing semi-supervised approaches in some of the data sets despite using no labeled documents. Moreover, the topics and topic sentiment detected by JST are indeed coherent and informative. We hypothesize that the JST model can readily meet the demand of large-scale sentiment analysis from the web in an open-ended fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence that children continue to experience attention deficit hyperactivity disorder (ADHD) symptoms into adult life. The two main treatments for ADHD are antidepressants and stimulants. Here, the effectiveness data relating to the use of antidepressants in adults with ADHD are reviewed. Four controlled and six open studies were identified. Although, there is only limited data currently available, antidepressants may offer an effective therapy for adult ADHD. Controlled trials have studied desipramine, atomoxetine and bupropion, with most evidence supporting the efficacy of desipramine. The initial data indicate that atomoxetine is less effective than desipramine. The efficacy of bupropion is unclear. Initial published open data suggest a response rate of 50-78% with venlafaxine. Controlled studies are required to confirm this efficacy. Most of the present data are short-term, therefore long-term effectiveness data are required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present, LEAPS, a Semantic Web and Linked data framework for searching and visualising datasets from the domain of Algal biomass. LEAPS provides tailored interfaces to explore algal biomass datasets via REST services and a SPARQL endpoint for stakeholders in the domain of algal biomass. The rich suite of datasets include data about potential algal biomass cultivation sites, sources of CO2, the pipelines connecting the cultivation sites to the CO2 sources and a subset of the biological taxonomy of algae derived from the world's largest online information source on algae.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a vision and a proposal for using Semantic Web technologies in the organic food industry. This is a very knowledge intensive industry at every step from the producer, to the caterer or restauranteur, through to the consumer. There is a crucial need for a concept of environmental audit which would allow the various stake holders to know the full environmental impact of their economic choices. This is a di?erent and parallel form of knowledge to that of price. Semantic Web technologies can be used e?ectively for the calculation and transfer of this type of knowledge (together with other forms of multimedia data) which could contribute considerably to the commercial and educational impact of the organic food industry. We outline how this could be achieved as our essential ob jective is to show how advanced technologies could be used to both reduce ecological impact and increase public awareness.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Monitoring land-cover changes on sites of conservation importance allows environmental problems to be detected, solutions to be developed and the effectiveness of actions to be assessed. However, the remoteness of many sites or a lack of resources means these data are frequently not available. Remote sensing may provide a solution, but large-scale mapping and change detection may not be appropriate, necessitating site-level assessments. These need to be easy to undertake, rapid and cheap. We present an example of a Web-based solution based on free and open-source software and standards (including PostGIS, OpenLayers, Web Map Services, Web Feature Services and GeoServer) to support assessments of land-cover change (and validation of global land-cover maps). Authorised users are provided with means to assess land-cover visually and may optionally provide uncertainty information at various levels: from a general rating of their confidence in an assessment to a quantification of the proportions of land-cover types within a reference area. Versions of this tool have been developed for the TREES-3 initiative (Simonetti, Beuchle and Eva, 2011). This monitors tropical land-cover change through ground-truthing at latitude / longitude degree confluence points, and for monitoring of change within and around Important Bird Areas (IBAs) by Birdlife International and the Royal Society for the Protection of Birds (RSPB). In this paper we present results from the second of these applications. We also present further details on the potential use of the land-cover change assessment tool on sites of recognised conservation importance, in combination with NDVI and other time series data from the eStation (a system for receiving, processing and disseminating environmental data). We show how the tool can be used to increase the usability of earth observation data by local stakeholders and experts, and assist in evaluating the impact of protection regimes on land-cover change.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

With the recent rapid growth of the Semantic Web (SW), the processes of searching and querying content that is both massive in scale and heterogeneous have become increasingly challenging. User-friendly interfaces, which can support end users in querying and exploring this novel and diverse, structured information space, are needed to make the vision of the SW a reality. We present a survey on ontology-based Question Answering (QA), which has emerged in recent years to exploit the opportunities offered by structured semantic information on the Web. First, we provide a comprehensive perspective by analyzing the general background and history of the QA research field, from influential works from the artificial intelligence and database communities developed in the 70s and later decades, through open domain QA stimulated by the QA track in TREC since 1999, to the latest commercial semantic QA solutions, before tacking the current state of the art in open user-friendly interfaces for the SW. Second, we examine the potential of this technology to go beyond the current state of the art to support end-users in reusing and querying the SW content. We conclude our review with an outlook for this novel research area, focusing in particular on the R&D directions that need to be pursued to realize the goal of efficient and competent retrieval and integration of answers from large scale, heterogeneous, and continuously evolving semantic sources.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Semantic Web relies on carefully structured, well defined, data to allow machines to communicate and understand one another. In many domains (e.g. geospatial) the data being described contains some uncertainty, often due to incomplete knowledge; meaningful processing of this data requires these uncertainties to be carefully analysed and integrated into the process chain. Currently, within the SemanticWeb there is no standard mechanism for interoperable description and exchange of uncertain information, which renders the automated processing of such information implausible, particularly where error must be considered and captured as it propagates through a processing sequence. In particular we adopt a Bayesian perspective and focus on the case where the inputs / outputs are naturally treated as random variables. This paper discusses a solution to the problem in the form of the Uncertainty Markup Language (UncertML). UncertML is a conceptual model, realised as an XML schema, that allows uncertainty to be quantified in a variety of ways i.e. realisations, statistics and probability distributions. UncertML is based upon a soft-typed XML schema design that provides a generic framework from which any statistic or distribution may be created. Making extensive use of Geography Markup Language (GML) dictionaries, UncertML provides a collection of definitions for common uncertainty types. Containing both written descriptions and mathematical functions, encoded as MathML, the definitions within these dictionaries provide a robust mechanism for defining any statistic or distribution and can be easily extended. Universal Resource Identifiers (URIs) are used to introduce semantics to the soft-typed elements by linking to these dictionary definitions. The INTAMAP (INTeroperability and Automated MAPping) project provides a use case for UncertML. This paper demonstrates how observation errors can be quantified using UncertML and wrapped within an Observations & Measurements (O&M) Observation. The interpolation service uses the information within these observations to influence the prediction outcome. The output uncertainties may be encoded in a variety of UncertML types, e.g. a series of marginal Gaussian distributions, a set of statistics, such as the first three marginal moments, or a set of realisations from a Monte Carlo treatment. Quantifying and propagating uncertainty in this way allows such interpolation results to be consumed by other services. This could form part of a risk management chain or a decision support system, and ultimately paves the way for complex data processing chains in the Semantic Web.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

PowerAqua is a Question Answering system, which takes as input a natural language query and is able to return answers drawn from relevant semantic resources found anywhere on the Semantic Web. In this paper we provide two novel contributions: First, we detail a new component of the system, the Triple Similarity Service, which is able to match queries effectively to triples found in different ontologies on the Semantic Web. Second, we provide a first evaluation of the system, which in addition to providing data about PowerAqua's competence, also gives us important insights into the issues related to using the Semantic Web as the target answer set in Question Answering. In particular, we show that, despite the problems related to the noisy and incomplete conceptualizations, which can be found on the Semantic Web, good results can already be obtained.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we propose algorithms for combining and ranking answers from distributed heterogeneous data sources in the context of a multi-ontology Question Answering task. Our proposal includes a merging algorithm that aggregates, combines and filters ontology-based search results and three different ranking algorithms that sort the final answers according to different criteria such as popularity, confidence and semantic interpretation of results. An experimental evaluation on a large scale corpus indicates improvements in the quality of the search results with respect to a scenario where the merging and ranking algorithms were not applied. These collective methods for merging and ranking allow to answer questions that are distributed across ontologies, while at the same time, they can filter irrelevant answers, fuse similar answers together, and elicit the most accurate answer(s) to a question.