8 resultados para Web, Html 5, JavaScript, Dart, Structured Web Programming
em Aston University Research Archive
Resumo:
In current organizations, valuable enterprise knowledge is often buried under rapidly expanding huge amount of unstructured information in the form of web pages, blogs, and other forms of human text communications. We present a novel unsupervised machine learning method called CORDER (COmmunity Relation Discovery by named Entity Recognition) to turn these unstructured data into structured information for knowledge management in these organizations. CORDER exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments in an expert evaluation, a quantitative benchmarking, and an application of CORDER in a social networking tool called BuddyFinder.
Resumo:
Models are central tools for modern scientists and decision makers, and there are many existing frameworks to support their creation, execution and composition. Many frameworks are based on proprietary interfaces, and do not lend themselves to the integration of models from diverse disciplines. Web based systems, or systems based on web services, such as Taverna and Kepler, allow composition of models based on standard web service technologies. At the same time the Open Geospatial Consortium has been developing their own service stack, which includes the Web Processing Service, designed to facilitate the executing of geospatial processing - including complex environmental models. The current Open Geospatial Consortium service stack employs Extensible Markup Language as a default data exchange standard, and widely-used encodings such as JavaScript Object Notation can often only be used when incorporated with Extensible Markup Language. Similarly, no successful engagement of the Web Processing Service standard with the well-supported technologies of Simple Object Access Protocol and Web Services Description Language has been seen. In this paper we propose a pure Simple Object Access Protocol/Web Services Description Language processing service which addresses some of the issues with the Web Processing Service specication and brings us closer to achieving a degree of interoperability between geospatial models, and thus realising the vision of a useful 'model web'.
Resumo:
With the recent rapid growth of the Semantic Web (SW), the processes of searching and querying content that is both massive in scale and heterogeneous have become increasingly challenging. User-friendly interfaces, which can support end users in querying and exploring this novel and diverse, structured information space, are needed to make the vision of the SW a reality. We present a survey on ontology-based Question Answering (QA), which has emerged in recent years to exploit the opportunities offered by structured semantic information on the Web. First, we provide a comprehensive perspective by analyzing the general background and history of the QA research field, from influential works from the artificial intelligence and database communities developed in the 70s and later decades, through open domain QA stimulated by the QA track in TREC since 1999, to the latest commercial semantic QA solutions, before tacking the current state of the art in open user-friendly interfaces for the SW. Second, we examine the potential of this technology to go beyond the current state of the art to support end-users in reusing and querying the SW content. We conclude our review with an outlook for this novel research area, focusing in particular on the R&D directions that need to be pursued to realize the goal of efficient and competent retrieval and integration of answers from large scale, heterogeneous, and continuously evolving semantic sources.
Resumo:
The Semantic Web relies on carefully structured, well defined, data to allow machines to communicate and understand one another. In many domains (e.g. geospatial) the data being described contains some uncertainty, often due to incomplete knowledge; meaningful processing of this data requires these uncertainties to be carefully analysed and integrated into the process chain. Currently, within the SemanticWeb there is no standard mechanism for interoperable description and exchange of uncertain information, which renders the automated processing of such information implausible, particularly where error must be considered and captured as it propagates through a processing sequence. In particular we adopt a Bayesian perspective and focus on the case where the inputs / outputs are naturally treated as random variables. This paper discusses a solution to the problem in the form of the Uncertainty Markup Language (UncertML). UncertML is a conceptual model, realised as an XML schema, that allows uncertainty to be quantified in a variety of ways i.e. realisations, statistics and probability distributions. UncertML is based upon a soft-typed XML schema design that provides a generic framework from which any statistic or distribution may be created. Making extensive use of Geography Markup Language (GML) dictionaries, UncertML provides a collection of definitions for common uncertainty types. Containing both written descriptions and mathematical functions, encoded as MathML, the definitions within these dictionaries provide a robust mechanism for defining any statistic or distribution and can be easily extended. Universal Resource Identifiers (URIs) are used to introduce semantics to the soft-typed elements by linking to these dictionary definitions. The INTAMAP (INTeroperability and Automated MAPping) project provides a use case for UncertML. This paper demonstrates how observation errors can be quantified using UncertML and wrapped within an Observations & Measurements (O&M) Observation. The interpolation service uses the information within these observations to influence the prediction outcome. The output uncertainties may be encoded in a variety of UncertML types, e.g. a series of marginal Gaussian distributions, a set of statistics, such as the first three marginal moments, or a set of realisations from a Monte Carlo treatment. Quantifying and propagating uncertainty in this way allows such interpolation results to be consumed by other services. This could form part of a risk management chain or a decision support system, and ultimately paves the way for complex data processing chains in the Semantic Web.
Resumo:
This thesis provides a set of tools for managing uncertainty in Web-based models and workflows.To support the use of these tools, this thesis firstly provides a framework for exposing models through Web services. An introduction to uncertainty management, Web service interfaces,and workflow standards and technologies is given, with a particular focus on the geospatial domain.An existing specification for exposing geospatial models and processes, theWeb Processing Service (WPS), is critically reviewed. A processing service framework is presented as a solutionto usability issues with the WPS standard. The framework implements support for Simple ObjectAccess Protocol (SOAP), Web Service Description Language (WSDL) and JavaScript Object Notation (JSON), allowing models to be consumed by a variety of tools and software. Strategies for communicating with models from Web service interfaces are discussed, demonstrating the difficultly of exposing existing models on the Web. This thesis then reviews existing mechanisms for uncertainty management, with an emphasis on emulator methods for building efficient statistical surrogate models. A tool is developed to solve accessibility issues with such methods, by providing a Web-based user interface and backend to ease the process of building and integrating emulators. These tools, plus the processing service framework, are applied to a real case study as part of the UncertWeb project. The usability of the framework is proved with the implementation of aWeb-based workflow for predicting future crop yields in the UK, also demonstrating the abilities of the tools for emulator building and integration. Future directions for the development of the tools are discussed.
Resumo:
Bacterial lipoproteins have many important functions and represent a class of possible vaccine candidates. The prediction of lipoproteins from sequence is thus an important task for computational vaccinology. Naïve-Bayesian networks were trained to identify SpaseII cleavage sites and their preceding signal sequences using a set of 199 distinct lipoprotein sequences. A comprehensive range of sequence models was used to identify the best model for lipoprotein signal sequences. The best performing sequence model was found to be 10-residues in length, including the conserved cysteine lipid attachment site and the nine residues prior to it. The sensitivity of prediction for LipPred was 0.979, while the specificity was 0.742. Here, we describe LipPred, a web server for lipoprotein prediction; available at the URL: http://www.jenner.ac.uk/LipPred/. LipPred is the most accurate method available for the detection of SpaseIIcleaved lipoprotein signal sequences and the prediction of their cleavage sites.
Resumo:
The Protein pKa Database (PPD) v1.0 provides a compendium of protein residue-specific ionization equilibria (pKa values), as collated from the primary literature, in the form of a web-accessible postgreSQL relational database. Ionizable residues play key roles in the molecular mechanisms that underlie many biological phenomena, including protein folding and enzyme catalysis. The PPD serves as a general protein pKa archive and as a source of data that allows for the development and improvement of pKa prediction systems. The database is accessed through an HTML interface, which offers two fast, efficient search methods: an amino acid-based query and a Basic Local Alignment Search Tool search. Entries also give details of experimental techniques and links to other key databases, such as National Center for Biotechnology Information and the Protein Data Bank, providing the user with considerable background information.
Resumo:
As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.