97 resultados para Wavelength division multiplexer
em Aston University Research Archive
Resumo:
A technique for interrogating multiplexed fibre Bragg grating (FBG) sensors using an arrayed waveguide grating (AWG) is described. The approach considerably extends the sensing range from that achieved previously, while providing a strain resolution of 17nevHz at 30 Hz.
Resumo:
A novel wavelength-division-multiplexed in-fibre Bragg grating sensor system combined with high resolution drift-compensated interferometric wavelength-shift detection is described. This crosstalk-free system is based on the use of an interferometric wavelength scanner and a low resolution spectrometer. A four element system is demonstrated for temperature measurement, and a resolution of ±0.1°C has been achieved.
Resumo:
We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach—Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 ne-vHz at 7 Hz for a wavelength of 1535 nm.
Resumo:
A Bragg grating fast tunable filter prototype working over a linear tuning range of 45 nm with a maximum tuning speed of 21 nm/ms has been realized. The tunable filter system is based on two piezoelectric stack actuators moving a mechanical device thus compressing an apodized fiber Bragg grating. The filter allows both traction and compression and can work in transmission and in reflection. It is designed to work with a channel spacing of 100 GHz according to the ITU specifications for wavelength division multiplexing systems
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Optical packet transmission in 42.6 Gbit/s wavelength-division-multiplexed clockwork-routed networks
Resumo:
The use of amplitude-modulated phase-shift-keyed (AM-PSK) optical data transmission is investigated in a sequence of concatenated links in a wavelength-division-multiplexed clockwork-routed network. The narrower channel spacing made possible by using AM-PSK format allows the network to contain a greater number of network nodes. Full differential precoding at the packet source reduces the amount of high-speed electronics required in the network and also offers simplified header recognition and time-to-live mechanisms.
Resumo:
We propose a 2R regeneration scheme based on a nonlinear optical loop mirror and optical filtering. The feasibility of wavelength-division multiplexing operation at 40 Gbit/s is numerically demonstrated. We examine the characteristics of one-step regeneration and discuss networking applications.
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Resumo:
A novel wavelength-division-multiplexed in-fibre Bragg grating sensor system combined with high resolution drift-compensated interferometric wavelength-shift detection is described. This crosstalk-free system is based on the use of an interferometric wavelength scanner and a low resolution spectrometer. A four element system is demonstrated for temperature measurement, and a resolution of ±0.1°C has been achieved.
Resumo:
A Bragg grating fast tunable filter prototype working over a linear tuning range of 45 nm with a maximum tuning speed of 21 nm/ms has been realized. The tunable filter system is based on two piezoelectric stack actuators moving a mechanical device thus compressing an apodized fiber Bragg grating. The filter allows both traction and compression and can work in transmission and in reflection. It is designed to work with a channel spacing of 100 GHz according to the ITU specifications for wavelength division multiplexing systems.
Resumo:
A technique for interrogating multiplexed fibre Bragg grating (FBG) sensors using an arrayed waveguide grating (AWG) is described. The approach considerably extends the sensing range from that achieved previously, while providing a strain resolution of 17nε/√Hz at 30 Hz.
Resumo:
This paper shows, for the first time, the implementation of a WDM subsystem at the 2μm wavelength window with mixed formats. Three wavelength channels were directly modulated with BPSK Fast-OFDM at 5Gbit/s per channel, with a fourth channel NRZ-OOK externally modulated at 8.5Gbit/s giving a total capacity in excess of 20 Gbit/s. © 2012 OSA.
Resumo:
We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach—Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 ne-vHz at 7 Hz for a wavelength of 1535 nm.
Resumo:
In this paper, we investigate the impact of inter-modal four-wave mixing on mode- and wavelength-division-multiplexing systems. A set of coupled nonlinear Schrödinger equations, including linear mode coupling, is derived allowing to isolate the inter-modal four-wave mixing terms. The efficiency of inter-modal four-wave mixing between degenerate LP modes is found to be significantly higher than the intra-modal four-wave mixing efficiency. However, it is shown that the inter-modal four-wave mixing efficiency between degenerate modes is significantly reduced by the linear mode coupling.
Resumo:
Recent theoretical investigations have demonstrated that the stability of mode-locked solution of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this paper, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple frequency channels. © 2010 Copyright SPIE - The International Society for Optical Engineering.