2 resultados para Water vapor

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary pyrolysis in fluidized bed fast pyrolysis of biomass is the focus of this work. A novel computational fluid dynamics (CFD) model coupled with a comprehensive chemistry scheme (134 species and 4169 reactions, in CHEMKIN format) has been developed to investigate this complex phenomenon. Previous results from a transient three-dimensional model of primary pyrolysis were used for the source terms of primary products in this model. A parametric study of reaction atmospheres (H2O, N2, H2, CO2, CO) has been performed. For the N2 and H2O atmosphere, results of the model compared favorably to experimentally obtained yields after the temperature was adjusted to a value higher than that used in experiments. One notable deviation versus experiments is pyrolytic water yield and yield of higher hydrocarbons. The model suggests a not overly strong impact of the reaction atmosphere. However, both chemical and physical effects were observed. Most notably, effects could be seen on the yield of various compounds, temperature profile throughout the reactor system, residence time, radical concentration, and turbulent intensity. At the investigated temperature (873 K), turbulent intensity appeared to have the strongest influence on liquid yield. With the aid of acceleration techniques, most importantly dimension reduction, chemistry agglomeration, and in-situ tabulation, a converged solution could be obtained within a reasonable time (∼30 h). As such, a new potentially useful method has been suggested for numerical analysis of fast pyrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents the simulation of the pyrolysis vapors condensation process using an Eulerian approach. The condensable volatiles produced by the fast pyrolysis of biomass in a 100 g/h bubbling fluidized bed reactor are condensed in a water cooled condenser. The vapors enter the condenser at 500 °C, and the water temperature is 15 °C. The properties of the vapor phase are calculated according to the mole fraction of its individual compounds. The saturated vapor pressure is calculated for the vapor mixture using a corresponding states correlation and assuming that the mixture of the condensable compounds behave as a pure fluid. Fluent 6.3 has been used as the simulation platform, while the condensation model has been incorporated to the main code using an external user defined function. © 2011 American Chemical Society.