6 resultados para Water use

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To create hydrologically sustainable wetlands, knowledge of the water use requirements of target habitats must be known. Extensive literature reviews highlighted a dearth of water-use data associated with large reedbeds and wet woodland habitats and in response to this field experiments were established. Field experiments to measure the water use rates of large reedbeds [ET(Reed)] were completed at three sites within the UK. Reference Crop Evapotranspiration [ETo] was calculated and mean monthly crop coefficients [Kc(Reed)] were developed. Kc(Reed) was less than 1 during the growing season (March to September), ranging between 0.22 in March and reaching a peak of 0.98 in June. The developed coefficients compare favourably with published data from other large reedbed systems and support the premise that the water use of large reedbeds is lower than that from small/fringe reedbeds. A methodology for determining water use rates from wet woodland habitats (UK NVC Code: W6) is presented, in addition to provisional ET(W6) rates for two sites in the UK. Reference Crop Evapotranspiration [ETo] data was used to develop Kc(W6) values which ranged between 0.89 (LV Lysimeter 1) and 1.64 (CH Lysimeter 2) for the period March to September. The data are comparable with relevant published data and show that the water use rates of wet woodland are higher than most other wetland habitats. Initial observations suggest that water use is related to the habitat’s establishment phase and the age and size of the canopy tree species. A theoretical case study presents crop coefficients associated with wetland habitats and provides an example water budget for the creation of a wetland comprising a mosaic of wetland habitats. The case study shows the critical role that the water use of wetland habitats plays within a water budget.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some of the factors affecting colonisation of a colonisation sampler, the Standard Aufwuchs Unit (S. Auf. U.) were investigated, namely immersion period, whether anchored on the bottom or suspended, and the influence of riffles. It was concluded that a four-week immersion period was best. S. Auf. U. anchored on the bottom collected both more taxa and individuals than suspended ones. Fewer taxa but more individuals colonised S. Auf. U. in the potamon zone compared to the rhithron zone with a consequent reduction in the values of pollution indexes and diversity. It was concluded that a completely different scoring system was necessary for lowland rivers. Macroinvertebrates colonising S. Auf. U. in simulated streams, lowland rivers and the R. Churnet reflected water quality. A variety of pollution and diversity indexes were applied to results from lowland river sites. Instead of these, it was recommended that an abbreviated species - relative abundance list be used to summarise biological data for use in lowland river surveillance. An intensive study of gastropod populations was made in simulated streams. Lynnaea peregra increased in abundance whereas Potamopyrgas jenkinsi decreased with increasing sewage effluent concentration. No clear-cut differences in reproduction were observed. The presence/absence of eight gastropod taxa was compared with concentrations of various pollutants in lowland rivers. On the basis of all field work it appeared that ammonia, nitrite, copper and zinc were the toxicants most likely to be detrimental to gastropods and that P. jenkinsi and Theodoxus fluviatilis were the least tolerant taxa. 96h acute toxicity tests of P. jenkinsi using ammonia and copper were carried out in a flow-through system after a variety of static range finding tests. P. jenkinsi was intolerant to both toxicants compared to reports on other taxa and the results suggested that these toxicants would affect distribution of this species in the field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study proposes a new type of greenhouse for water re-use and energy saving for agriculture in arid and semi-arid inland regions affected by groundwater salinity. It combines desalination using reverse osmosis (RO), re-use of saline concentrate rejected by RO for cooling, and rainwater harvesting. Experimental work was carried at GBPUAT, Pantnagar, India. Saline concentrate was fed to evaporative cooling pads of greenhouse and found to evaporate at similar rates as conventional freshwater. Two enhancements to the system are described: i) A jet pump, designed and tested to use pressurized reject stream to re-circulate cooling water and thus maintain uniform wetness in cooling pads, was found capable of multiplying flow of cooling water by a factor of 2.5 to 4 while lifting water to a head of 1.55 m; and ii) Use of solar power to drive ventilation fans of greenhouse, for which an electronic circuit has been produced that uses maximum power-point tracking to maximize energy efficiency. Re-use of RO rejected concentrate for cooling saves water (6 l d-1 m-2) of greenhouse floor area and the improved fan could reduce electricity consumption by a factor 8.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For remote, semi-arid areas, brackish groundwater (BW) desalination powered by solar energy may serve as the most technically and economically viable means to alleviate the water stresses. For such systems, high recovery ratio is desired because of the technical and economical difficulties of concentrate management. It has been demonstrated that the current, conventional solar reverse osmosis (RO) desalination can be improved by 40–200 times by eliminating unnecessary energy losses. In this work, a batch-RO system that can be powered by a thermal Rankine cycle has been developed. By directly recycling high pressure concentrates and by using a linkage connection to provide increasing feed pressures, the batch-RO has been shown to achieve a 70% saving in energy consumption compared to a continuous single-stage RO system. Theoretical investigations on the mass transfer phenomena, including dispersion and concentration polarization, have been carried out to complement and to guide experimental efforts. The performance evaluation of the batch-RO system, named DesaLink, has been based on extensive experimental tests performed upon it. Operating DesaLink using compressed air as power supply under laboratory conditions, a freshwater production of approximately 300 litres per day was recorded with a concentration of around 350 ppm, whilst the feed water had a concentration range of 2500–4500 ppm; the corresponding linkage efficiency was around 40%. In the computational aspect, simulation models have been developed and validated for each of the subsystems of DesaLink, upon which an integrated model has been realised for the whole system. The models, both the subsystem ones and the integrated one, have been demonstrated to predict accurately the system performance under specific operational conditions. A simulation case study has been performed using the developed model. Simulation results indicate that the system can be expected to achieve a water production of 200 m3 per year by using a widely available evacuated tube solar collector having an area of only 2 m2. This freshwater production would satisfy the drinking water needs of 163 habitants in the Rajasthan region, the area for which the case study was performed.