14 resultados para WOOD LOGS
em Aston University Research Archive
Resumo:
Pyrolysis is one of several thermochemical technologies that convert solid biomass into more useful and valuable bio-fuels. Pyrolysis is thermal degradation in the complete or partial absence of oxygen. Under carefully controlled conditions, solid biomass can be converted to a liquid known as bie-oil in 75% yield on dry feed. Bio-oil can be used as a fuel but has the drawback of having a high level of oxygen due to the presence of a complex mixture of molecular fragments of cellulose, hemicellulose and lignin polymers. Also, bio-oil has a number of problems in use including high initial viscosity, instability resulting in increased viscosity or phase separation and high solids content. Much effort has been spent on upgrading bio-oil into a more usable liquid fuel, either by modifying the liquid or by major chemical and catalytic conversion to hydrocarbons. The overall primary objective was to improve oil stability by exploring different ways. The first was to detennine the effect of feed moisture content on bio-oil stability. The second method was to try to improve bio-oil stability by partially oxygenated pyrolysis. The third one was to improve stability by co-pyrolysis with methanol. The project was carried out on an existing laboratory pyrolysis reactor system, which works well with this project without redesign or modification too much. During the finishing stages of this project, it was found that the temperature of the condenser in the product collection system had a marked impact on pyrolysis liquid stability. This was discussed in this work and further recommendation given. The quantity of water coming from the feedstock and the pyrolysis reaction is important to liquid stability. In the present work the feedstock moisture content was varied and pyrolysis experiments were carried out over a range of temperatures. The quality of the bio-oil produced was measured as water content, initial viscosity and stability. The result showed that moderate (7.3-12.8 % moisture) feedstock moisture led to more stable bio-oil. One of drawbacks of bio-oil was its instability due to containing unstable oxygenated chemicals. Catalytic hydrotreatment of the oil and zeolite cracking of pyrolysis vapour were discllssed by many researchers, the processes were intended to eliminate oxygen in the bio-oil. In this work an alternative way oxygenated pyrolysis was introduced in order to reduce oil instability, which was intended to oxidise unstable oxygenated chemicals in the bio-oil. The results showed that liquid stability was improved by oxygen addition during the pyrolysis of beech wood at an optimum air factor of about 0.09-0.15. Methanol as a postproduction additive to bio-oil has been studied by many researchers and the most effective result came from adding methanol to oil just after production. Co-pyrolysis of spruce wood with methanol was undertaken in the present work and it was found that methanol improved liquid stability as a co-pyrolysis solvent but was no more effective than when used as a postproduction additive.
Resumo:
The objective of the thesis was to analyse several process configurations for the production of electricity from biomass. Process simulation models using AspenPlus aimed at calculating the industrial performance of power plant concepts were built, tested, and used for analysis. The criteria used in analysis were performance and cost. All of the advanced systems appear to have higher efficiencies than the commercial reference, the Rankine cycle. However, advanced systems typically have a higher cost of electricity (COE) than the Rankine power plant. High efficiencies do not reduce fuel costs enough to compensate for the high capital costs of advanced concepts. The successful reduction of capital costs would appear to be the key to the introduction of the new systems. Capital costs account for a considerable, often dominant, part of the cost of electricity in these concepts. All of the systems have higher specific investment costs than the conventional industrial alternative, i.e. the Rankine power plant; Combined beat and power production (CUP) is currently the only industrial area of application in which bio-power costs can be considerably reduced to make them competitive. Based on the results of this work, AsperiPlus is an appropriate simulation platform. How-ever, the usefulness of the models could be improved if a number of unit operations were modelled in greater detail. The dryer, gasifier, fast pyrolysis, gas engine and gas turbine models could be improved.
Resumo:
This is a case study of a program of native speaker part-time EFL (English as a Foreign Language) teachers in a junior college in Japan. It has grown out of a curiosity to ascertain how the teachers have formed and continue to maintain a coordinated program in what would seem to be a disadvantageous national context where as part-time foreign teachers they are expected to do little more than just teach a few classes of mainly oral English. This study investigates the organizational culture the teachers have formed for themselves within their staffroom, and looks at the implications of this for part-time teachers in such an environment. More specifically, the study highlights that central to the program is an interactive decision-making function engaged in by all the teachers which has not only created but also continually enables an identifiable staffroom culture. This organizational culture is contingent on college and staffroom conditions, program affordances such as shared class logs and curriculum sharing, and on the interactive decision-making itself. It is postulated that the contingencies formed in this created and continually creating shared world not only offer the teachers a proficient way to work in their severely time-constricted environment, but also provide them with fertile ground for the self-regulation of a thus created zone of covert staffroom ‘on-the-job’ teacher development.
Resumo:
This study aims to investigate the pyrolysis behaviour of metal-contaminated wood and the combustion properties of char derived from wood pyrolysis. Seven metals (Na, Mg, Ca, Zn, Cd, Pb and Fe(III)) were introduced to willow in cation form by ion-exchange and the thermal behaviour of demineralised samples and samples with additional ash were also investigated. The results show that the char yield increased from 21% to 24-28% and levoglucosan yield in vapour phase decreased from 88% to 62-29% after the addition of inorganic compounds, even though the metal binding capacity of wood varied from one metal ion to another. While char yield seems to be effected mainly by the concentration of the metal ions, levoglucosan yield was more dependent on the ionic species especially when sodium ions were present. When combustion experiments were carried out with char made of the metal enriched wood, two consecutive steps were observed, both effected by the presence of inorganic compounds. The first step was identified as the release and combustion of volatiles, while the second peak of the burning profile is the actual combustion of the fixed carbon. The burnout temperatures, estimated ignition indices and the conversion indicate that the type and not the amount of metal ions were the determining factors during the second step of combustion. © 2012 Published by Elsevier B.V.
Resumo:
Sewage sludge was pyrolysed with 40% mixed wood, 40% rapeseed and 40% straw. The reason for the mixture of different biomass is to investigate the impact of co-pyrolysis on the upper phase of bio-oil in terms of changes to composition, elemental analysis, viscosity, water content, pH, higher heating value and acid number that could impact on their applications. The biomass was pyrolysed in a laboratory at 450 °C and bio-oil was collected from two cooling traps. The bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw was analysed for composition using the gas chromatography mass spectrometry. The upper phase from the co-pyrolysis process was also characterised for ultimate analysis, higher heating values, water content, viscosity, pH and acid number. There was an increase in the amount of upper phase produced with co-pyrolysis of 40% rapeseed. It was also found that the upper phase from sewage sludge with mixed wood has the highest viscosity, acid number and lowest pH. The bio-oil containing 40% straw was found to have a pH of 6.5 with a very low acid number while the 40% rapeseed was found to have no acid number. Sewage sludge with 40% rapeseed was found to have the highest energy content of 34.8 MJ/kg, 40% straw has 32.5 MJ/kg while the 40% mixed wood pyrolysis oil has the lowest energy content of 31.3 MJ/kg. The 40% rapeseed fraction was found to have the highest water content of 8.2% compared to other fractions.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The viscosity of four aged bio-oil samples was measured experimentally at various shear rates and temperatures using a rotational viscometer. The experimental bio-oils were derived from fast pyrolysis of beech wood at 450, 500, and 550 °C and Miscanthus at 500 °C (in this work, they were named as BW1, BW2, BW3, and MXG) in a bubbling fluidized bed reactor. The viscosity of all bio-oils was kept constant at various shear rates at the same temperature, which indicated that they were Newtonian fluids. The viscosity of bio-oils was strongly dependent upon the temperature, and with the increase of the temperature from 30 to 80 °C, the viscosity of BW1, BW2, BW3, and MXG decreased by 90.7, 93.3, 92.6, and 90.2%, respectively. The Arrhenius viscosity model, which has been commonly used to represent the temperature dependence of the viscosity of many fluids, did not fit the viscosity-temperature experimental data of all bio-oils very well, especially in the low- and high-temperature regions. For comparison, the Williams-Landel-Ferry (WLF) model was also used. The results showed that the WLF model gave a very good description of the viscosity-temperature relationship of each bio-oil with very small residuals and the BW3 bio-oil had the strongest viscosity-temperature dependence.