6 resultados para WHEAT-FLOUR
em Aston University Research Archive
Resumo:
Plantain (Banana-Musa AAB) is a widely growing but commercially underexploited tropical fruit. This study demonstrates the processing of plantain to flour and extends its use and convenience as a constituent of bread, cake and biscuit. Plantain was peeled, dried and milled to produce flour. Proximate analysis was carried out on the flour to determine the food composition. Drying at temperatures below 70ºC produced light coloured plantain flour. Experiments were carried out to determine the mechanism of drying, the heat and mass transfer coefficients, effect of air velocity, temperature and cube size on the rate of drying of plantain cubes. The drying was diffusion controlled. Pilot scale drying of plantain cubes in a cabinet dryer showed no significant increase of drying rate above 70ºC. In the temperature range found most suitable for plantain drying (ie 60 to 70ºC) the total drying time was adequately predicted using a modified equation based on Fick's Law provided the cube temperature was taken to be about 5ºC below the actual drying air temperature. Studies of baking properties of plantain flour revealed that plantain flour can be substituted for strong wheat flour up to 15% for bread making and up to 50% for madeira cake. A shortcake biscuit was produced using 100% plantain flour and test-marketed. Detailed economic studies showed that the production of plantain fruit and its processing into flour would be economically viable in Nigeria when the flour is sold at the wholesale price of NO.65 per kilogram provided a minimum sale of 25% plantain suckers. There is need for government subsidy if plantain flour is to compete with imported wheat flour. The broader economic benefits accruing from the processing of plantain fruit into flour and its use in bakery products include employment opportunity, savings in foreign exchange and stimulus to home agriculture.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Aim of the work is the implementation of a low temperature reforming (LT reforming) unit downstream the Haloclean pyrolyser in order to enhance the heating value of the pyrolysis gas. Outside the focus of this work was to gain a synthesis gas quality for further use. Temperatures between 400 °C and 500 °C were applied. A commercial pre-reforming catalyst on a nickel basis from Südchemie was chosen for LT reforming. As biogenic feedstock wheat straw has been used. Pyrolysis of wheat straw at 450 °C by means of Haloclean pyrolysis leads to 28% of char, 50% of condensate and 22% of gas. The condensate separates in a water phase and an organic phase. The organic phase is liquid, but contains viscous compounds. These compounds could underlay aging and could lead to solid tars which can cause post processing problems. Therefore, the implementation of a catalytic reformer is not only of interest from an energetic point of view, it is generally interesting for tar conversion purposes after pyrolysis applications. By using a fixed bed reforming unit at 450–490 °C and space velocities about 3000 l/h the pyrolysis gas volume flow could be increased to about 58%. This corresponds to a decrease of the yields of condensates by means of catalysis up to 17%, the yield of char remains unchanged, since pyrolysis conditions are the same. The heating value in the pyrolysis gas could be increased by the factor of 1.64. Hydrogen concentrations up to 14% could be realised.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT