3 resultados para WATER STATUS
em Aston University Research Archive
Resumo:
A large body of evidence supports a role of oxidative stress in Alzheimer disease (AD) and in cerebrovascular disease. A vascular component might be critical in the pathophysiology of AD, but there is a substantial lack of data regarding the simultaneous behavior of peripheral antioxidants and biomarkers of oxidative stress in AD and vascular dementia (VaD). Sixty-three AD patients, 23 VaD patients and 55 controls were included in the study. We measured plasma levels of water-soluble (vitamin C and uric acid) and lipophilic (vitamin E, vitamin A, carotenoids including lutein, zeaxanthin, β-cryptoxanthin, lycopene, α- and β-carotene) antioxidant micronutrients as well as levels of biomarkers of lipid peroxidation [malondialdehyde (MDA)] and of protein oxidation [immunoglobulin G (IgG) levels of protein carbonyls and dityrosine] in patients and controls. With the exception of β-carotene, all antioxidants were lower in demented patients as compared to controls. Furthermore, AD patients showed a significantly higher IgG dityrosine content as compared to controls. AD and VaD patients showed similar plasma levels of plasma antioxidants and MDA as well as a similar IgG content of protein carbonyls and dityrosine. We conclude that, independent of its nature - vascular or degenerative - dementia is associated with the depletion of a large spectrum of antioxidant micronutrients and with increased protein oxidative modification. This might be relevant to the pathophysiology of dementing disorders, particularly in light of the recently suggested importance of the vascular component in AD development. Copyright © 2004 S. Karger AG, Basel.
Resumo:
Background: A large body of evidence supports a role of oxidative stress in Alzheimer disease (AD) and in cerebrovascular disease. A vascular component might be critical in the pathophysiology of AD. Objective(s): To evaluate the simultaneous behavior of a broad spectrum of peripheral antioxidants and biomarkers of oxidative stress in AD and vascular dementia (VaD). Methods: Sixty-three AD patients, 23 VaD patients and 55 controls were included in the study. We measured plasma levels of water-soluble (vitamin C and uric acid) and lipophilic (vitamin E, vitamin A, carotenoids including lutein, zeaxanthin, [3-cryptoxanthin, lycopene, c~- and [3-carotene) antioxidant micronutrients as well as levels of biomarkers of lipid peroxidation [malondialdehyde (MDA)] and of protein oxidation [immunoglobniin G (Ig G) levels of protein carbonyls and dityrosine] in patients and controls. Results: AD and VaD patients showed significantly decreased plasma levels of the water-soluble vitamin C and uric acid, of the lipophilic vitamin Eand vitamin A, and of the carotenoids lutein, zeaxanthin, 13-cryptoxanthin, lycopene and (x-carotene as compared to controls; among biomarkers of oxidative stress, only the content of dityrosine in Ig G was found to be significantly higher (p < 0.01) in AD patients as compared to controls; although a trend towards higher levels of dityrosine was also observed in VaD subjects compared to controls (6.3 4- 1.7 ~M in VaD patients vs. 5.1 4- 1.6 IxM in controls; p = 0.06), it did not reach statistical significance. In a cumulative analysis of all patient samples, a significant inverse association was found between plasma lycopene and MDA levels (r = -0.53, p < 0.0001). Conclusions: Independent of its nature-vascular or degenerativedementia is associated with the depletion of a large spectrum of antioxidant micronutrients and with increased protein oxidative modification. This might be relevant to the pathophysiology of dementing disorders, particularly in light of the recently suggested importance of the vascular component in AD development.
Resumo:
AIM: The aim of the study was to determine, objectively and non-invasively, whether changes in accommodative demand modify differentially the peripheral refraction in emmetropic and myopic human eyes. METHODS: Forty subjects (19 male, 21 female) aged 20-30 years (mean 22.7 (SD 2.8) years), 21 emmetropes (mean spherical equivalent refractive error (MSE) -0.13 (SD 0.29) D) and 19 myopes (MSE -2.95 (SD 1.76) D) participated in the study. Ametropia was corrected with soft contact lenses (etafilcon A, 58% water content). Subjects viewed monocularly a stationary, high contrast (85%) Maltese cross at 0.0, 1.0, 2.0 and 3.0 D of accommodative demand and at 0, 10, 20 and 30 degrees field angle (nasal and temporal) through a +3.0 D Badal optical system. Static recordings of the accommodation response were obtained for each accommodative level, at each field angle, with an objective, open-view, infrared optometer. RESULTS: Peripheral mean spherical equivalent (M) data showed that the emmetropic cohort exhibited relative myopic shifts into the periphery, while the myopic group showed hypermetropic shifts. Increasing accommodative demand did not alter the peripheral refractive profile in either the temporal (p = 0.25) or nasal (p = 0.07) periphery with no differential accommodative effect between refractive groups in either the temporal (p = 0.77) or nasal (p = 0.73) field. Significant shifts in the J(0) astigmatic component were seen in the temporal (p<0.0005) and nasal (p<0.0005) fields with increasing eccentricity. Interaction effects between eccentricity and accommodative demand illustrated that increasing accommodative demand significantly altered the peripheral refractive profile in the temporal J(0) astigmatic component (p<0.0005). The nasal periphery, however, failed to show such an effect (p = 0.65). CONCLUSIONS: Alterations in peripheral refraction augmented by changes in ocular accommodation are relatively unaffected by refractive error for young, healthy human eyes.