16 resultados para Vitamin B12 supplementation
em Aston University Research Archive
Resumo:
Ascorbate can act as both a reducing and oxidising agent in vitro depending on its environment. It can modulate the intracellular redox environment of cells and therefore is predicted to modulate thiol-dependent cell signalling and gene expression pathways. Using proteomic analysis of vitamin C-treated T cells in vitro, we have previously reported changes in expression of five functional protein groups associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of the signalling molecule phosphatidylinositol transfer protein (PITP) was also confirmed using Western blotting. Herein, we have compared protein changes elicited by ascorbate in vitro, with the effect of ascorbate on plasma potassium levels, on peripheral blood mononuclear cell (PBMC) apoptosis and PITP expression, in patients supplemented with vitamin C (0-2 g/d) for up to 10 weeks to investigate whether in vitro model systems are predictive of in vivo effects. PITP varied in expression widely between subjects at all time-points analysed but was increased by supplementation with 2 g ascorbate/d after 5 and 10 weeks. No effects on plasma potassium levels were observed in supplemented subjects despite a reduction of K+ channel proteins in ascorbate-treated T cells in vitro. Similarly, no effect of vitamin C supplementation on PBMC apoptosis was observed, whilst ascorbate decreased expression of caspase 3 recruitment domain protein in vitro. These data provide one of the first demonstrations that proteomics may be valuable in developing predictive markers of nutrient effects in vivo and may identify novel pathways for studying mechanisms of action in vivo.
Resumo:
We have investigated vitamin C supplementation effects on immunoglobulin oxidation (carbonyls) and total plasma protein sulfhydryls in healthy human volunteers. After receiving placebo, plasma ascorbate and oxidation markers were unchanged. Following 5 weeks supplementation with vitamin C (400 mg/day), plasma ascorbate increased but no significant effect on protein oxidation was observed. At 10 and 15 weeks supplementation, carbonyl levels were significantly reduced (P < 0.01) in subjects with low baseline ascorbate (29.51 ± 5.3 μM) but not in those with normal baseline ascorbate (51.81 ± 2.3 μM). To eliminate any effect from seasonal variation in dietary antioxidant intake, a second phase was undertaken. Subjects on vitamin C for 15 weeks were randomly assigned to receive either placebo or vitamin C. No difference in plasma sulfhydryl content was observed. Subjects withdrawn from supplementation showed an increase in immunoglobulin carbonyl content (P < 0.01). This demonstrates that dietary vitamin C supplementation can reduce certain types of oxidative protein damage in subjects with low basal antioxidant. (C) 2000 Academic Press.
Resumo:
Regulation of monocyte adhesion molecule gene expression is via redox sensitive transcription factors. We have investigated whether dietary antioxidant supplementation with vitamin C (250mg/day) can modulate monocyte ICAM-1 expression in healthy male subjects with low plasma vitamin C at baseline. In a randomised, double-blind, crossover study, monocyte ICAM-1 mRNA was analysed using quantitative reverse transcriptase PCR. Protein was determined by flow cytometry (monocytes) and ELISA (plasma). Monocyte numbers were unaltered by supplementation. Subjects with low plasma vitamin C (<50μM) prior to supplementation expressed higher levels of monocyte ICAM-1mRNA, and showed a significant (50%) reduction in ICAM-1mRNA expression after 6 weeks of 250mg/day vitamin C supplementation (p<0.05). This was paralleled by a reduction in sICAM-1 (p<0.05). For the first time, these results show that dietary vitamin C can modulate monocyte ICAM-1 gene expression in vivo, where regulation of gene expression represents a novel mechanism for benefit from dietary antioxidants. © 2003 Elsevier Inc. All rights reserved.
Resumo:
Oxidative DNA damage is postulated to be involved in carcinogenesis, and as a consequence, dietary antioxidants have received much interest. A recent report indicates that vitamin C facilitates the decomposition of hydroperoxides in vitro, generating reactive aldehydes. We present evidence for the in vivo generation of glyoxal, an established product of lipid peroxidation, glucose/ascorbate autoxidation, or free radical attack of deoxyribose, following supplementation of volunteers with 400 mg/d vitamin C. Utilizing a monoclonal antibody to a deoxycytidine-glyoxal adduct (gdC), we measured DNA lesion levels in peripheral blood mononuclear cells. Supplementation resulted in significant (p = .001) increases in gdC levels at weeks 11, 16, and 21, with corresponding increases in plasma malondialdehyde levels and, coupled with previous findings, is strongly suggestive of a pro-oxidative effect. However, continued supplementation revealed a highly significant (p = .0001) reduction in gdC levels. Simultaneous analysis of cyclobutane thymine dimers revealed no increase upon supplementation but, as with gdC, levels decreased. Although no single mechanism is identified, our data demonstrate a pro-oxidant event in the generation of reactive aldehydes following vitamin C supplementation in vivo. These results are also consistent with our hypothesis for a role of vitamin C in an adaptive/repair response and indicate that nucleotide excision repair specifically may be affected. © 2003 Elsevier Science Inc.
Resumo:
Chronically haemodialysed end-stage renal disease patients are at high risk of morbidity arising from complications of dialysis, the underlying pathology that has led to renal disease and the complex pathology of chronic kidney disease. Anaemia is commonplace and its origins are multifactorial, involving reduced renal erythropoietin production, accumulation of uremic toxins and an increase in erythrocyte fragility. Oxidative damage is a common risk factor in renal disease and its co-morbidities and is known to cause erythrocyte fragility. Therefore, we have investigated the hypothesis that specific erythrocyte membrane proteins are more oxidised in end-stage renal disease patients and that vitamin C supplementation can ameliorate membrane protein oxidation. Eleven patients and 15 control subjects were recruited to the study. Patients were supplemented with 2 × 500 mg vitamin C per day for 4 weeks. Erythrocyte membrane proteins were prepared pre- and post-vitamin C supplementation for determination of protein oxidation. Total protein carbonyls were reduced by vitamin C supplementation but not by dialysis when investigated by enzyme linked immunosorbent assay. Using a western blot to detect oxidised proteins, one protein band, later identified as containing ankyrin, was found to be oxidised in patients but not controls and was reduced significantly by 60% in all patients after dialysis and by 20% after vitamin C treatment pre-dialysis. Ankyrin oxidation analysis may be useful in a stratified medicines approach as a possible marker to identify requirements for intervention in dialysis patients.
Resumo:
Monocytes play a central role in inflammatory responses through systemic antigen presentation and cytokine secretion. Regulation of monocyte adhesion molecule and inflammatory gene expression is via redox sensitive transcription factors. Therefore we have investigated the hypothesis that dietary antioxidant supplementation with vitamins C (250mg/d) or E (400iU/d) for six weeks can modulate monocyte ICAM-1 expression in healthy male subjects with low plasma vitamin C at baseline. In a randomised, double-blind, crossover study, ICAM-1 mRNA and protein was analysed using quantitative RTPCR with ELISA measurement of PCR products and by flow cytometry and ELISA respectively. Monocyte numbers were unaltered by supplementation. Subjects with low plasma vitamin C (<50uM) prior to supplementation expressed higher levels of monocyte ICAM-1 mRNA, and showed a significant (50%) reduction in ICAM-1 mRNA expression after 6 weeks of 250mg/d vitamin C supplementation compared to subjects with normal plasma vitamin C. This was paralleled by a reduction in plasma sICAM-1. Vitamin E supplementation had no effect on ICAM-1 expression. For the first time, these results show that dietary vitamin C can modulate monocyte ICAM-1 gene expression in vivo, where regulation of gene expression represents a novel mechanism for benefit from dietary antioxidants.
Resumo:
Monocyte recruitment and retention in the vasculature is influenced by oxidative stress and is involved in cardiovascular disease (CVD). Individuals with low plasma ascorbate are at elevated risk of CVD. It is unknown whether vitamin C supplementation affects monocyte adhesion to endothelial cells (ECs) in healthy non-smokers. In a randomised double-blind crossover study the effect of vitamin C supplementation (six weeks, 250 mg/day) was determined in subjects with normal (HIC) and below average (LOC) plasma vitamin C concentration at baseline (mean = 67μM, n = 20, mean = 32μM, n = 20, respectively). LOC subjects showed 30% greater monocyte adhesion to ECs. This was significantly reduced by 37% (P < 0.02) following vitamin C supplementation to levels of HIC monocyte adhesion. No differences in plasma malondialdehyde concentrations were observed between groups or after supplementation. In conclusion, vitamin C supplementation normalises monocyte adhesion in subjects with low plasma vitamin C (LOC). This process may be related to a direct effect on monocytes, independent of lipid peroxidation. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. CRP is currently one of the best markers of inflammatory disease and disease activity. One of the keys cells involved in inflammation within chronic inflammatory diseases is the monocyte. Monocytes are able to modulate inflammation through cytokine expression, cytosolic peroxide formation, adhesion molecule expression and subsequent adhesion/migration to sites of inflammation. CRP has been previously shown to bind directly to monocytes through Fc receptors. However this observation is not conclusive and requires further investigation. The effects of incubation of CRP with human primary and monocytic cell lines were examined using monocytic cytokine expression, adhesion molecule expression and adhesion to endothelial cells and intracellular peroxide formation, as end points. Monocytic intracellular signalling events were investigated after interaction of CRP with specific CRP receptors on monocytes. These initial signalling events were examined for their role in modulating monocytic adhesion molecule and cytokine expression. Monocyte recruitment and retention in the vasculature is also influenced by oxidative stress. Therefore the effect of 6 weeks of antioxidant intervention in vivo was examined on monocytic adhesion molecule expression, adhesion to endothelial cells ex vivo and on serum CRP concentrations, pre- and post- supplementation with the antioxidants vitamin C and vitaInin E. In summary, CRP is able to bind FcγRIIa. CRP binding FcγR initiates an intracellular signalling cascade that phosphorylates the non-receptor tyrosine kinase, Syk, associated with intracellular tyrosine activating motifs on the cytoplasmic tail of Fcγ receptors. CRP incubations increased phosphatidyl inositol turnover and Syk phosphorylation ultimately lead to Ca2+ mobilisation in monocytes. CRP mediated Syk phosphorylation in monocytes leads to an increase in CD 11b and IL-6 expression. CRP engagement with monocytes also leads to an increase in peroxide production, which can be inhibited in vitro using the antioxidants α-tocopherol and ascorbic acid. CRP mediated CD 11b expression is not redox regulated by CRP mediated changes in cytosolic peroxides. The FcyRIla polymorphism at codon 131 effects the phenotypic driven changes described in monocytes by CRP, where R/R allotypes have a greater increase in CD11b, in response to CRP, which may be involved in promoting the monocytic inflammatory response. CRP leads to an increase in the expression of pro-inflammatory cytokines, which alters the immune phenotype of circulating monocytes. Vitamin C supplementation reduced monocytic adhesion to endothelial cells, but had no effect on serum levels of CRP. Where long-term antioxidant intervention may provide benefit from the risk of developing vascular inflammatory disease, by reducing monocytic adhesion to the vasculature. In conclusion CRP appears to be much more than just a marker of ongoing inflammation or associated inflammatory disease and disease activity. This data suggests that at pathophysiological concentrations, CRP may be able to directly modulate inflammation through interacting with monocytes and thereby alter the inflammatory response associated with vascular inflammatory diseases.
Resumo:
There appears to be a paucity of data examining the effect of dietary antioxidants on levels of oxidative DNA damage in vivo, limiting evidence-based assessment of antioxidant efficacy, mechanisms and recommendation for optimal intake. We have examined levels of 8-oxo-2'-deoxyguanosine (8-oxodG) in mononuclear cell DNA, serum and urine from subjects undergoing supplementation with 500 mg/day vitamin C. Significant decreases in DNA levels of 8-oxodG were seen, correlating strongly with increases in plasma vitamin C concentration. Furthermore we established a timecourse for sequential, significant increases in serum and urinary 8-oxodG levels. These results illustrate, for the first time in humans, the kinetics of 8-oxodG removal and processing in vivo, suggesting a role for vitamin C in the regulation of DNA repair enzymes and thereby demonstrating a non-scavenging antioxidant effect.
Resumo:
Epidemiological evidence suggests that diets rich in fruits, vegetables and pulses reduce the risk of CVD. The Physicians Health Study has demonstrated reduction of CHD death with regular nut consumption1. One major modifiable risk factor for CHD is an unhealthy diet. Thus, an almondenrichment study has been undertaken to examine the benefit of almonds (Prunus amygdalis) in healthy individuals either with or without significant risk of vascular disease. Almonds contain various macronutrients (low SFA content, absence of cholesterol and high MUFA content) and micronutrients, including vitamin E, polyphenols and arginine, which afford vascular benefit. The effects of almond consumption (25 g/d for 4 weeks followed by 50 g/d for 4 weeks) were evaluated in three non-smoking subject groups: healthy male volunteers between the ages of 18 and 35 years (n 15); men at risk of heart disease between the ages of 18 and 35 years (n 12); mature men and women >50 years of age (n 18). A fourth control group (n 14) were followed over 8 weeks without dietary almond enrichment as a treatment control. None of the subjects withdrew from the study and 90% completed the study. The interim results of the study showed that in the three active groups there was little evidence for a change in total cholesterol, LDL-cholesterol or HDL-cholesterol. In the mature group there was a trend towards increasing HDL-cholesterol. The mature and ‘at-risk’ groups also showed a significant changes in systolic blood pressure (P<0.05) during almond consumption. The healthy group showed a decrease in diastolic blood pressure (P<0.05). The ‘at-risk’ group showed a significant increase (P<0.05) in flowmediated dilation after 8 weeks of almond consumption. Data analysis is ongoing, with completion of the study in November 2007. The beneficial effects of almond consumption on flow-mediated dilation and blood pressure may be attributed to the high content in almonds of arginine, which serves as a precursor to the vasodilatory molecule, NO.
Resumo:
Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (α-tocopherol). We have tested the hypothesis that α-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 μM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received α-tocopherol supplements (400 IU RRR-α-tocopherol /day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM- 1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-κB in isolated resting monocytes, nor any effect of α-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and α-tocopherol concentration. In conclusion, α-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration. © W. S. Maney & Son Ltd.
Resumo:
The role of nutritional supplementation is of increasing interest with regard to ocular disease. Randomised controlled trials have demonstrated the effectiveness of supplementation for age-related macular degeneration, and formulations are now being developed for use by people with diabetes and diabetic retinopathy. The aim of this review was to synthesise the evidence for use of nutritional supplementation in type 2 diabetes. MEDLINE and EMBASE databases were searched using a systematic approach. Only double-masked randomised controlled trials were selected. A total of 50 trials were identified as suitable for inclusion. The potential role of alpha-lipoic acid, chromium, folic acid, isoflavones, magnesium, Pycnogenol®, selenium, vitamin C, vitamin E, and zinc in the treatment of type 2 diabetes is discussed. The review of trials identifies positive effects of these nutrients on various outcome measures relating to insulin resistance and cardiovascular factors. Chromium was the most studied supplement, accounting for 16 of the 50 trials. A majority of the trials found a positive effect of chromium on fasting plasma glucose. Isoflavones were found to have a positive effect on insulin resistance and cardiovascular outcome measures, but only when combined with soy proteins. Vitamin E is reported to reduce oxidative stress at levels of 200 mg day-1 or more.
Resumo:
Objective: The aim of the study is to determine the effect of lutein combined with vitamin and mineral supplementation on contrast sensitivity in people with age-related macular disease (ARMD). Design: A prospective, 9-month, double-masked randomized controlled trial. Setting: Aston University, Birmingham, UK and a UK optometric clinical practice. Subjects: Age-related maculopathy (ARM) and atrophic age-related macular degeneration (AMD) participants were randomized (using a random number generator) to either placebo (n = 10) or active (n=15) groups. Three of the placebo group and two of the active group dropped out. Interventions: The active group supplemented daily with 6 mg lutein combined with vitamins and minerals. The outcome measure was contrast sensitivity (CS) measured using the Pelli-Robson chart, for which the study had 80% power at the 5% significance level to detect a change of 0.3log units. Results: The CS score increased by 0.07 ± 0.07 and decreased by 0.02 ± 0.18 log units for the placebo and active groups, respectively. The difference between these values is not statistically significant (z = 0.903, P = 0.376). Conclusion: The results suggest that 6 mg of lutein supplementation in combination with other antioxidants is not beneficial for this group. Further work is required to establish optimum dosage levels.
Resumo:
Cardiovascular disease (CVD) is the leading cause of death in Europe responsible for more than 4.3 million deaths annually. The World Health Organisation funded the Monica project (1980s-1990s) which monitored ten million subjects aged 22-6Syrs, and demonstrated that coronary heart disease (CHD) mortality declined over 10 years, was due in two thirds of cases to reduced incidence of CHD (reduced risk behaviours e.g. poor diet and smoking) and one third by improved treatments. Epidemiological evidence suggests diets rich in antioxidants decrease incidence of CVD. Regular consumption of nuts, rich in vitamin E and polyphenols reduces atherosclerosis, an important risk for heart disease. Intervention studies to date using alpha tocopherol (an active component of vitamin E) have not consistently proved beneficial. This thesis aims to investigate the effect of almond supplementation on vascular risk factors in healthy young males (18-3Syrs); mature males and female(>SOyrs); and males considered at increased risk of CVD (18-3Syrs) in a cohort of 67 subjects. The effects of almond intake were assessed after 2Sg/d for four weeks followed by SOg/d for four weeks and compared to a control group which did not consume almonds or change their diet. Cardiovascular risk was assessed by plasma lipid profiles, apolipoprotein A1, plasma nitrates/nitrates, vascular flow, BMl, blood pressure, sVCAM-1 and protein oxidation. Systolic and diastolic blood pressures were reduced in almond supplemented volunteers but not in controls. Dietary monounsaturated fatty acids, polyunsaturated fatty acid content and total dietary fats were increased by almond supplementation. Neither sVCAM-1, venous occlusion plethysmography nor plasma nitrite levels were affected by almond intake in any independent group. No significant changes in plasma lipids, and apolipoprotein A1 were observed. In conclusion almonds supplementation caused a reduction in blood pressure that may be due to increased sensitivity of the baroreceptors after increased monounsaturated fatty acid intake.