82 resultados para Visual-system Model
em Aston University Research Archive
Resumo:
The processing conducted by the visual system requires the combination of signals that are detected at different locations in the visual field. The processes by which these signals are combined are explored here using psychophysical experiments and computer modelling. Most of the work presented in this thesis is concerned with the summation of contrast over space at detection threshold. Previous investigations of this sort have been confounded by the inhomogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area summation experiments both by incorporating it into models of the visual system and by using it to compensate stimuli in order to factor out the effects of the inhomogeneity. The results of these area summation experiments show that the summation of contrast over area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation behaviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic observers. Finally, the methods used to study the summation of threshold contrast over area are adapted to investigate the integration of coherent orientation signals in a texture. The results of this study are described by a two-stage model, with a mandatory local combination stage followed by flexible global pooling of these local outputs. In each study, the results suggest a more extensive combination of signals in vision than has been previously understood.
Resumo:
Both the eye and brain generate magnetic fields when stimulated with a variety of visual cues. These magnetic fields can be measured with a magnetometer; a device which uses superconducting technology. The application of this technique to measuring the magnetooculogram, magnetoretinogram and visually evoked fields from the brain is described. So far the main use of this technique has been in pure research. Its potential for diagnosing ocular and neurological diseases is discussed.
Resumo:
This thesis considers the visual electrophysiological effects of vigabatrin (an anti-epileptic drug, which acts by increasing the levels of the inhibitory neurotransmitter GABA on the retina of the eye compared to the concentric visual field defects which have been found associated with the drug. Flash and pattern ERG's, EOG's multifocal ERG's (VERIS), flash and pattern VEP's and visual fields were tested. Although VEP's have been shown not to be affected by vigabatrin, these were recorded to complete the testing. Initially, of the eight vigabatrin patients with known visual field defects, 7 showed abnormally delayed 30Hz flicker a-wave latencies, 5 abnormally delayed 30Hz b-wave latencies and 6 abnormally low 30Hz amplitudes. Also 7 showed an abnormally prolonged latency of oscillatory potential 1 (OP1). The two patients taking vigabatrin at the time of testing showed low EOG Arden index values. The VERIS results correlated well with the severity of the visual field defects. Following this finding, eleven healthy subjects received vigabatrin over a 10-day period. No changes were seen in the visual fields, however, the photopic ERG b-wave latency significantly increased (although not to abnormal values). A matched pairs study with eleven vigabatrin, patients and eleven epileptic patients, who had never taken vigabatrin supported the findings of abnormal 30Hz flicker b-wave and OP latencies associated with vigabatrin, again with the VERIS results correlating to the severity of the visual field defect. The abnormal 30Hz flicker and VERIS responses indicate involvement of the cone photoreceptors and the OP's show an effect on the amacrine cells. The ERG increase in the photopic b-wave latency also suggests involvement of the bipolar cells, however, this effect and the reversible effect on the Arden index after cessation of the drug may be unrelated to the visual field defect. To conclude this thesis, a field specific VEP stimulus was developed to assess the retinal function in the peripheral field of paediatric patients. It comprises of a dartboard stimulus with a central 0-5 degree black and white chequered stimulus, a blank 5-30 degree annulus and a 30-60 degree peripheral chequered stimulus. When optimised on four vigabatrin patients it was found that no peripheral response can be evoked with a field loss exceeding 30-35 degrees. Co-operation was found to be successful in children as young as four years old.
Resumo:
This thesis is an exploration of the organisation and functioning of the human visual system using the non-invasive functional imaging modality magnetoencephalography (MEG). Chapters one and two provide an introduction to the ‘human visual system and magnetoencephalographic methodologies. These chapters subsequently describe the methods by which MEG can be used to measure neuronal activity from the visual cortex. Chapter three describes the development and implementation of novel analytical tools; including beamforming based analyses, spectrographic movies and an optimisation of group imaging methods. Chapter four focuses on the use of established and contemporary analytical tools in the investigation of visual function. This is initiated with an investigation of visually evoked and induced responses; covering visual evoked potentials (VEPs) and event related synchronisation/desynchronisation (ERS/ERD). Chapter five describes the employment of novel methods in the investigation of cortical contrast response and demonstrates distinct contrast response functions in striate and extra-striate regions of visual cortex. Chapter six use synthetic aperture magnetometry (SAM) to investigate the phenomena of visual cortical gamma oscillations in response to various visual stimuli; concluding that pattern is central to its generation and that it increases in amplitude linearly as a function of stimulus contrast, consistent with results from invasive electrode studies in the macaque monkey. Chapter seven describes the use of driven visual stimuli and tuned SAM methods in a pilot study of retinotopic mapping using MEG; finding that activity in the primary visual cortex can be distinguished in four quadrants and two eccentricities of the visual field. Chapter eight is a novel implementation of the SAM beamforming method in the investigation of a subject with migraine visual aura; the method reveals desynchronisation of the alpha and gamma frequency bands in occipital and temporal regions contralateral to observed visual abnormalities. The final chapter is a summary of main conclusions and suggested further work.
Functional neuroimaging and behavioural studies on global form processing in the human visual system
Resumo:
Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and behavioural experiments were used to investigate the neural processes underlying global form perception in human vision. Behavioural studies using Glass patterns examined sensitivity for detecting radial, rotational and horizontal structure. Neuroimaging experiments using either Glass patterns or arrays of Gabor patches determined the spatio-temporal neural responseto global form. MEG data were analysed using synthetic aperture magnetometry (SAM) to spatially map event-related cortical oscillatory power changes: the temporal sequencing of activity within a discrete cortical area was determined using a Morlet wavelet transform. A case study was conducted to determine the effects of strbismic amblyopia on global form processing: all other observers were normally-sighted. The main findings from normally-sighted observers were: 1) sensitivity to horizontal structure was less than for radial or rotational structure; 2) the neural response to global structure was a reduction in cortical oscillatory power (10-30 Hz) within a network of extrastriate areas, including V4 and V3a; 3) the extend of reduced cortical power was least for horizontal patters; 4) V1 was not identified as a region of peak activity with either MEG or fMRI. The main findings with the strabismic amblyope were: 1) sensitivity for detection of radial, rotational, and horizontal structure was reduced when viewed with the amblyopic- relative to the fellow- eye; 2) cortical power changes within V4 to the presentation of rotational Glass patterns were less when viewed with the amblyopic- compared with the fellow- eye. The main conclusions are: 1) a network of extrastriate cortical areas are involved in the analysis of global form, with the most prominent change in neural activity being a reduction in oscillatory power within the 10-30 Hz band; 2) in strabismic amblyopia, the neuronal assembly associated with form perception in extrastriate cortex may be dysfunctional, the nature of this dysfunction may be a change in the normal temporal pattern of neuronal discharges; 3) MEG, fMRI and behavioural measures support the notion that different neural processes underlie the perception of horizontal as opposed to radial or rotational structure.
Resumo:
A critical review of previous research revealed that visual attention tests, such as the Useful Field of View (UFOV) test, provided the best means of detecting age-related changes to the visual system that could potentially increase crash risk. However, the question was raised as to whether the UFOV, which was regarded as a static visual attention test, could be improved by inclusion of kinetic targets that more closely represent the driving task. A computer program was written to provide more information about the derivation of UFOV test scores. Although this investigation succeeded in providing new information, some of the commercially protected UFOV test procedures still remain unknown. Two kinetic visual attention tests (DRTS1 and 2), developed at Aston University to investigate inclusion of kinetic targets in visual attention tests, were introduced. The UFOV was found to be more repeatable than either of the kinetic visual attention tests and learning effects or age did not influence these findings. Determinants of static and kinetic visual attention were explored. Increasing target eccentricity led to reduced performance on the UFOV and DRTS1 tests. The DRTS2 was not affected by eccentricity but this may have been due to the style of presentation of its targets. This might also have explained why only the DRTS2 showed laterality effects (i.e. better performance to targets presented on the left hand side of the road). Radial location, explored using the UFOV test, showed that subjects responded best to targets positioned to the horizontal meridian. Distraction had opposite effects on static and kinetic visual attention. While UFOV test performance declined with distraction, DRTS1 performance increased. Previous research had shown that this striking difference was to be expected. Whereas the detection of static targets is attenuated in the presence of distracting stimuli, distracting stimuli that move in a structured flow field enhances the detection of moving targets. Subjects reacted more slowly to kinetic compared to static targets, longitudinal motion compared to angular motion and to increased self-motion. However, the effects of longitudinal motion, angular motion, self-motion and even target eccentricity were caused by target edge speed variations arising because of optic flow field effects. The UFOV test was more able to detect age-related changes to the visual system than were either of the kinetic visual attention tests. The driving samples investigated were too limited to draw firm conclusions. Nevertheless, the results presented showed that neither the DRTS2 nor the UFOV tests were powerful tools for the identification of drivers prone to crashes or poor driving performance.
Resumo:
In an endeavour to provide further insight into the maturation of the human visual system, the contiguous development of the pattern reversal VEP, flash VEP and flash ERG was studied in a group of neurologically normal pre-term infants, born between 28 and 35 weeks gestation. Maturational changes were observed in all the evoked electrophysiological responses recorded, these were mainly characterised by an increase in the complexity of the waveform and a shortening in the latency of the response. Initially the ERG was seen to consist of a broad b-wave only, with the a-wave emerging at an average age of 40 weeks PMA. The a-wave showed only a slight reduction in latency and a modest increase in amplitude as the infant grows older, whereas the changes seen in the ERG b-wave were much more dramatic. Pattern reversal VEPs were successfully recorded for the first time during the pre-term period. Flash VEPs were also recorded for comparison. The neonatal pattern reversal VEP consistently showed a major positive component (P1) of long latency. As the infant grew older, the latency of the P1 component decreased and was found to be negatively correlated with PMA at recording. The appearance of the N1 and N2 components became more frequent as the infant matured. The majority of infants were found to be myopic at birth and refractive error was correlated with PMA, with emmetropisation occurring at about 45 weeks PMA. The pattern reversal VEP in response to 2o checks was apparently unaffected by refractive error.
Resumo:
This paper presents a case study of the use of a visual interactive modelling system to investigate issues involved in the management of a hospital ward. Visual Interactive Modelling systems are seen to offer the learner the opportunity to explore operational management issues from a varied perspective and to provide an interactive system in which the learner receives feedback on the consequences of their actions. However to maximise the potential learning experience for a student requires the recognition that they require task structure which helps them to understand the concepts involved. These factors can be incorporated into the visual interactive model by providing an interface customised to guide the student through the experimentation. Recent developments of VIM systems in terms of their connectivity with the programming language Visual Basic facilitates this customisation.
Resumo:
Adapting to blurred images makes in-focus images look too sharp, and vice-versa (Webster et al, 2002 Nature Neuroscience 5 839 - 840). We asked how such blur adaptation is related to contrast adaptation. Georgeson (1985 Spatial Vision 1 103 - 112) found that grating contrast adaptation followed a subtractive rule: perceived (matched) contrast of a grating was fairly well predicted by subtracting some fraction k(~0.3) of the adapting contrast from the test contrast. Here we apply that rule to the responses of a set of spatial filters at different scales and orientations. Blur is encoded by the pattern of filter response magnitudes over scale. We tested two versions - the 'norm model' and 'fatigue model' - against blur-matching data obtained after adaptation to sharpened, in-focus or blurred images. In the fatigue model, filter responses are simply reduced by exposure to the adapter. In the norm model, (a) the visual system is pre-adapted to a focused world and (b) discrepancy between observed and expected responses to the experimental adapter leads to additional reduction (or enhancement) of filter responses during experimental adaptation. The two models are closely related, but only the norm model gave a satisfactory account of results across the four experiments analysed, with one free parameter k. This model implies that the visual system is pre-adapted to focused images, that adapting to in-focus or blank images produces no change in adaptation, and that adapting to sharpened or blurred images changes the state of adaptation, leading to changes in perceived blur or sharpness.
Resumo:
A multi-scale model of edge coding based on normalized Gaussian derivative filters successfully predicts perceived scale (blur) for a wide variety of edge profiles [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision]. Our model spatially differentiates the luminance profile, half-wave rectifies the 1st derivative, and then differentiates twice more, to give the 3rd derivative of all regions with a positive gradient. This process is implemented by a set of Gaussian derivative filters with a range of scales. Peaks in the inverted normalized 3rd derivative across space and scale indicate the positions and scales of the edges. The edge contrast can be estimated from the height of the peak. The model provides a veridical estimate of the scale and contrast of edges that have a Gaussian integral profile. Therefore, since scale and contrast are independent stimulus parameters, the model predicts that the perceived value of either of these parameters should be unaffected by changes in the other. This prediction was found to be incorrect: reducing the contrast of an edge made it look sharper, and increasing its scale led to a decrease in the perceived contrast. Our model can account for these effects when the simple half-wave rectifier after the 1st derivative is replaced by a smoothed threshold function described by two parameters. For each subject, one pair of parameters provided a satisfactory fit to the data from all the experiments presented here and in the accompanying paper [May, K. A. & Georgeson, M. A. (2007). Added luminance ramp alters perceived edge blur and contrast: A critical test for derivative-based models of edge coding. Vision Research, 47, 1721-1731]. Thus, when we allow for the visual system's insensitivity to very shallow luminance gradients, our multi-scale model can be extended to edge coding over a wide range of contrasts and blurs. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Adapting to blurred or sharpened images alters perceived blur of a focused image (M. A. Webster, M. A. Georgeson, & S. M. Webster, 2002). We asked whether blur adaptation results in (a) renormalization of perceived focus or (b) a repulsion aftereffect. Images were checkerboards or 2-D Gaussian noise, whose amplitude spectra had (log-log) slopes from -2 (strongly blurred) to 0 (strongly sharpened). Observers adjusted the spectral slope of a comparison image to match different test slopes after adaptation to blurred or sharpened images. Results did not show repulsion effects but were consistent with some renormalization. Test blur levels at and near a blurred or sharpened adaptation level were matched by more focused slopes (closer to 1/f) but with little or no change in appearance after adaptation to focused (1/f) images. A model of contrast adaptation and blur coding by multiple-scale spatial filters predicts these blur aftereffects and those of Webster et al. (2002). A key proposal is that observers are pre-adapted to natural spectra, and blurred or sharpened spectra induce changes in the state of adaptation. The model illustrates how norms might be encoded and recalibrated in the visual system even when they are represented only implicitly by the distribution of responses across multiple channels.
Resumo:
Methods of solving the neuro-electromagnetic inverse problem are examined and developed, with specific reference to the human visual cortex. The anatomy, physiology and function of the human visual system are first reviewed. Mechanisms by which the visual cortex gives rise to external electric and magnetic fields are then discussed, and the forward problem is described mathematically for the case of an isotropic, piecewise homogeneous volume conductor, and then for an anisotropic, concentric, spherical volume conductor. Methods of solving the inverse problem are reviewed, before a new technique is presented. This technique combines prior anatomical information gained from stereotaxic studies, with a probabilistic distributed-source algorithm to yield accurate, realistic inverse solutions. The solution accuracy is enhanced by using both visual evoked electric and magnetic responses simultaneously. The numerical algorithm is then modified to perform equivalent current dipole fitting and minimum norm estimation, and these three techniques are implemented on a transputer array for fast computation. Due to the linear nature of the techniques, they can be executed on up to 22 transputers with close to linear speedup. The latter part of the thesis describes the application of the inverse methods to the analysis of visual evoked electric and magnetic responses. The CIIm peak of the pattern onset evoked magnetic response is deduced to be a product of current flowing away from the surface areas 17, 18 and 19, while the pattern reversal P100m response originates in the same areas, but from oppositely directed current. Cortical retinotopy is examined using sectorial stimuli, the CI and CIm ;peaks of the pattern onset electric and magnetic responses are found to originate from areas V1 and V2 simultaneously, and they therefore do not conform to a simple cruciform model of primary visual cortex.
Resumo:
The visual system pools information from local samples to calculate textural properties. We used a novel stimulus to investigate how signals are combined to improve estimates of global orientation. Stimuli were 29 × 29 element arrays of 4 c/deg log Gabors, spaced 1° apart. A proportion of these elements had a coherent orientation (horizontal/vertical) with the remainder assigned random orientations. The observer's task was to identify the global orientation. The spatial configuration of the signal was modulated by a checkerboard pattern of square checks containing potential signal elements. The other locations contained either randomly oriented elements (''noise check'') or were blank (''blank check''). The distribution of signal elements was manipulated by varying the size and location of the checks within a fixed-diameter stimulus. An ideal detector would only pool responses from potential signal elements. Humans did this for medium check sizes and for large check sizes when a signal was presented in the fovea. For small check sizes, however, the pooling occurred indiscriminately over relevant and irrelevant locations. For these check sizes, thresholds for the noise check and blank check conditions were similar, suggesting that the limiting noise is not induced by the response to the noise elements. The results are described by a model that filters the stimulus at the potential target orientations and then combines the signals over space in two stages. The first is a mandatory integration of local signals over a fixed area, limited by internal noise at each location. The second is a taskdependent combination of the outputs from the first stage. © 2014 ARVO.
Resumo:
Our goal here is a more complete understanding of how information about luminance contrast is encoded and used by the binocular visual system. In two-interval forced-choice experiments we assessed observers' ability to discriminate changes in contrast that could be an increase or decrease of contrast in one or both eyes, or an increase in one eye coupled with a decrease in the other (termed IncDec). The base or pedestal contrasts were either in-phase or out-of-phase in the two eyes. The opposed changes in the IncDec condition did not cancel each other out, implying that along with binocular summation, information is also available from mechanisms that do not sum the two eyes' inputs. These might be monocular mechanisms. With a binocular pedestal, monocular increments of contrast were much easier to see than monocular decrements. These findings suggest that there are separate binocular (B) and monocular (L,R) channels, but only the largest of the three responses, max(L,B,R), is available to perception and decision. Results from contrast discrimination and contrast matching tasks were described very accurately by this model. Stimuli, data, and model responses can all be visualized in a common binocular contrast space, allowing a more direct comparison between models and data. Some results with out-of-phase pedestals were not accounted for by the max model of contrast coding, but were well explained by an extended model in which gratings of opposite polarity create the sensation of lustre. Observers can discriminate changes in lustre alongside changes in contrast.
Resumo:
A fundamental problem for any visual system with binocular overlap is the combination of information from the two eyes. Electrophysiology shows that binocular integration of luminance contrast occurs early in visual cortex, but a specific systems architecture has not been established for human vision. Here, we address this by performing binocular summation and monocular, binocular, and dichoptic masking experiments for horizontal 1 cycle per degree test and masking gratings. These data reject three previously published proposals, each of which predict too little binocular summation and insufficient dichoptic facilitation. However, a simple development of one of the rejected models (the twin summation model) and a completely new model (the two-stage model) provide very good fits to the data. Two features common to both models are gently accelerating (almost linear) contrast transduction prior to binocular summation and suppressive ocular interactions that contribute to contrast gain control. With all model parameters fixed, both models correctly predict (1) systematic variation in psychometric slopes, (2) dichoptic contrast matching, and (3) high levels of binocular summation for various levels of binocular pedestal contrast. A review of evidence from elsewhere leads us to favor the two-stage model. © 2006 ARVO.