52 resultados para Visual and auditory processing
em Aston University Research Archive
Resumo:
Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks which are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty- one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.
Resumo:
Auditory processing disorder (APD) is diagnosed when a patient presents with listening difficulties which can not be explained by a peripheral hearing impairment or higher-order cognitive or language problems. This review explores the association between auditory processing disorder (APD) and other specific developmental disorders such as dyslexia and attention-deficit hyperactivity disorder. The diagnosis and aetiology of APD are similar to those of other developmental disorders and it is well established that APD often co-occurs with impairments of language, literacy, and attention. The genetic and neurological causes of APD are poorly understood, but developmental and behavioural genetic research with other disorders suggests that clinicians should expect APD to co-occur with other symptoms frequently. The clinical implications of co-occurring symptoms of other developmental disorders are considered and the review concludes that a multi-professional approach to the diagnosis and management of APD, involving speech and language therapy and psychology as well as audiology, is essential to ensure that children have access to the most appropriate range of support and interventions.
Resumo:
The possibility that developmental dyslexia results from low-level sensory processing deficits has received renewed interest in recent years. Opponents of such sensory-based explanations argue that dyslexia arises primarily from phonological impairments. However, many behavioural correlates of dyslexia cannot be explained sufficiently by cognitive-level accounts and there is anatomical, psychometric and physiological evidence of sensory deficits in the dyslexic population. This thesis aims to determine whether the low-level (pre-attentive) processing of simple auditory stimuli is disrupted in compensated adult dyslexics. Using psychometric and neurophysiological measures, the nature of auditory processing abnormalities is investigated. Group comparisons are supported by analysis of individual data in order to address the issue of heterogeneity in dyslexia. The participant pool consisted of seven compensated dyslexic adults and seven age and IQ matched controls. The dyslexic group were impaired, relative to the control group, on measures of literacy, phonological awareness, working memory and processing speed. Magnetoencephalographic recordings were conducted during processing of simple, non-speech, auditory stimuli. Results confirm that low-level auditory processing deficits are present in compensated dyslexic adults. The amplitude of N1m responses to tone pair stimuli were reduced in the dyslexic group. However, there was no evidence that manipulating either the silent interval or the frequency separation between the tones had a greater detrimental effect on dyslexic participants specifically. Abnormal MMNm responses were recorded in response to frequency deviant stimuli in the dyslexic group. In addition, complete stimulus omissions, which evoked MMNm responses in all control participants, failed to elicit significant MMNm responses in all but one of the dyslexic individuals. The data indicate both a deficit of frequency resolution at a local level of auditory processing and a higher-level deficit relating to the grouping of auditory stimuli, relevant for auditory scene analysis. Implications and directions for future research are outlined.
Resumo:
Adults show great variation in their auditory skills, such as being able to discriminate between foreign speech-sounds. Previous research has demonstrated that structural features of auditory cortex can predict auditory abilities; here we are interested in the maturation of 2-Hz frequency-modulation (FM) detection, a task thought to tap into mechanisms underlying language abilities. We hypothesized that an individual's FM threshold will correlate with gray-matter density in left Heschl's gyrus, and that this function-structure relationship will change through adolescence. To test this hypothesis, we collected anatomical magnetic resonance imaging data from participants who were tested and scanned at three time points: at 10, 11.5 and 13 years of age. Participants judged which of two tones contained FM; the modulation depth was adjusted using an adaptive staircase procedure and their threshold was calculated based on the geometric mean of the last eight reversals. Using voxel-based morphometry, we found that FM threshold was significantly correlated with gray-matter density in left Heschl's gyrus at the age of 10 years, but that this correlation weakened with age. While there were no differences between girls and boys at Times 1 and 2, at Time 3 there was a relationship between gray-matter density in left Heschl's gyrus in boys but not in girls. Taken together, our results confirm that the structure of the auditory cortex can predict temporal processing abilities, namely that gray-matter density in left Heschl's gyrus can predict 2-Hz FM detection threshold. This ability is dependent on the processing of sounds changing over time, a skill believed necessary for speech processing. We tested this assumption and found that FM threshold significantly correlated with spelling abilities at Time 1, but that this correlation was found only in boys. This correlation decreased at Time 2, and at Time 3 we found a significant correlation between reading and FM threshold, but again, only in boys. We examined the sex differences in both the imaging and behavioral data taking into account pubertal stages, and found that the correlation between FM threshold and spelling was strongest pre-pubertally, and the correlation between FM threshold and gray-matter density in left Heschl's gyrus was strongest mid-pubertally.
Resumo:
It has been proposed that language impairments in children with Autism Spectrum Disorders (ASD) stem from atypical neural processing of speech and/or nonspeech sounds. However, the strength of this proposal is compromised by the unreliable outcomes of previous studies of speech and nonspeech processing in ASD. The aim of this study was to determine whether there was an association between poor spoken language and atypical event-related field (ERF) responses to speech and nonspeech sounds in children with ASD (n = 14) and controls (n = 18). Data from this developmental population (ages 6-14) were analysed using a novel combination of methods to maximize the reliability of our findings while taking into consideration the heterogeneity of the ASD population. The results showed that poor spoken language scores were associated with atypical left hemisphere brain responses (200 to 400 ms) to both speech and nonspeech in the ASD group. These data support the idea that some children with ASD may have an immature auditory cortex that affects their ability to process both speech and nonspeech sounds. Their poor speech processing may impair their ability to process the speech of other people, and hence reduce their ability to learn the phonology, syntax, and semantics of their native language.
Resumo:
Two experiments investigated the conditions under which majority and minority sources instigate systematic processing of their messages. Both experiments crossed source status (majority vs. minority) with message quality (strong vs. weak arguments). In each experiment, message elaboration was manipulated by varying either motivational (outcome relevance, Experiment 1) or cognitive (orientating tasks, Experiment 2) factors. The results showed that when either motivational or cognitive factors encouraged low message elaboration, there was heuristic acceptance of the majority position without detailed message processing. When the level of message elaboration was intermediate, there was message processing only for the minority source. Finally, when message elaboration was high, there was message processing for both source conditions. These results show that majority and minority influence is sensitive to motivational and cognitive factors that constrain or enhance message elaboration and that both sources can lead to systematic processing under specific circumstances. © 2007 by the Society for Personality and Social Psychology, Inc.
Resumo:
In industrialised countries age-related macular disease (ARMD) is the leading cause of visual loss in older people. Because oxidative stress is purported to be associated with an increased risk of disease development the role of antioxidant supplementation is of interest. Lutein is a carotenoid antioxidant that accumulates within the retina and is thought to filter blue light. Increased levels of lutein have been associated with reduced risk of developing ARMD and improvements in visual and retinal function in eyes with ARMD. The aim of this randomised controlled trial (RCT) was to investigate the effect of a lutein-based nutritional supplement on subjective and objective measures of visual function in healthy eyes and in eyes with age-related maculopathy (ARM) – an early form of ARMD. Supplement withdrawal effects were also investigated. A sample size of 66 healthy older (HO), healthy younger (HY), and ARM eyes were randomly allocated to receive a lutein-based supplement or no treatment for 40 weeks. The supplemented group then stopped supplementation to look at the effects of withdrawal over a further 20 weeks. The primary outcome measure was multifocal electroretinogram (mfERG) N1P1 amplitude. Secondary outcome measures were mfERG N1, P1 and N2 latency, contrast sensitivity (CS), Visual acuity (VA) and macular pigment optical density (MPOD). Sample sizes were sufficient for the RCT to have an 80% power to detect a significant clinical effect at the 5% significance level for all outcome measures when the healthy eye groups were combined, and CS, VA and mfERG in the ARM group. This RCT demonstrates significant improvements in MPOD in HY and HO supplemented eyes. When HY and HO supplemented groups were combined, MPOD improvements were maintained, and mfERG ring 2 P1 latency became shorter. On withdrawal of the supplement mfERG ring 1 N1P1 amplitude reduced in HO eyes. When HO and HY groups were combined, mfERG ring 1 and ring 2 N1P1 amplitudes were reduced. In ARM eyes, ring 3 N2 latency and ring 4 P1 latency became longer. These statistically significant changes may not be clinically significant. The finding that a lutein-based supplement increases MPOD in healthy eyes, but does not increase mfERG amplitudes contrasts with the CARMIS study and contributes to the debate on the use of nutritional supplementation in ARM.
Resumo:
In a group of adult dyslexics word reading and, especially, word spelling are predicted more by what we have called lexical learning (tapped by a paired-associate task with pictures and written nonwords) than by phonological skills. Nonword reading and spelling, instead, are not associated with this task but they are predicted by phonological tasks. Consistently, surface and phonological dyslexics show opposite profiles on lexical learning and phonological tasks. The phonological dyslexics are more impaired on the phonological tasks, while the surface dyslexics are equally or more impaired on the lexical learning tasks. Finally, orthographic lexical learning explains more variation in spelling than in reading, and subtyping based on spelling returns more interpretable results than that based on reading. These results suggest that the quality of lexical representations is crucial to adult literacy skills. This is best measured by spelling and best predicted by a task of lexical learning. We hypothesize that lexical learning taps a uniquely human capacity to form new representations by recombining the units of a restricted set.
Resumo:
Introduction: The requirement of adjuvants in subunit protein vaccination is well known yet their mechanisms of action remain elusive. Of the numerous mechanisms suggested, cationic liposomes appear to fulfil at least three: the antigen depot effect, the delivery of antigen to antigen presenting cells (APCs) and finally the danger signal. We have investigated the role of antigen depot effect with the use of dual radiolabelling whereby adjuvant and antigen presence in tissues can be quantified. In our studies a range of cationic liposomes and different antigens were studied to determine the importance of physical properties such as liposome surface charge, antigen association and inherent lipid immunogenicity. More recently we have investigated the role of liposome size with the cationic liposome formulation DDA:TDB, composed of the cationic lipid dimethyldioctadecylammonium (DDA) and the synthetic mycobacterial glycolipid trehalose 6,6’-dibehenate (TDB). Vesicle size is a frequently investigated parameter which is known to result in different routes of endocytosis. It has been postulated that targeting different routes leads to different intracellular signaling pathway activation and it is certainly true that numerous studies have shown vesicle size to have an effect on the resulting immune responses (e.g. Th1 vs. Th2). Aim: To determine the effect of cationic liposome size on the biodistribution of adjuvant and antigen, the ensuing humoral and cell-mediated immune responses and the uptake and activation of antigen by APCs including macrophages and dendritic cells. Methods: DDA:TDB liposomes were made to three different sizes (~ 0.2, 0.5 and 2 µm) followed by the addition of tuberculosis antigen Ag85B-ESAT-6 therefore resulting in surface adsorption. Liposome formulations were injected into Balb/c or C57Bl/6 mice via the intramuscular route. The biodistribution of the liposome formulations was followed using dual radiolabelling. Tissues including muscle from the site of injection and local draining lymph nodes were removed and liposome and antigen presence quantified. Mice were also immunized with the different vaccine formulations and cytokine production (from Ag85B-ESAT-6 restimulated splenocytes) and antibody presence in blood assayed. Furthermore, splenocyte proliferation after restimulating with Ag85B-ESAT-6 was measured. Finally, APCs were compared for their ability to endocytose vaccine formulations and the effect this had on the maturation status of the cell populations was compared. Flow cytometry and fluorescence labelling was used to investigate maturation marker up-regulation and efficacy of phagocytosis. Results: Our results show that for an efficient Ag85B-ESAT-6 antigen depot at the injection site, liposomes composed of DDA and TDB are required. There is no significant change in the presence of liposome or antigen at 6hrs or 24hrs p.i, nor does liposome size have an effect. Approximately 0.05% of the injected liposome dose is detected in the local draining lymph node 24hrs p.i however protein presence is low (<0.005% dose). Preliminary in vitro data shows liposome and antigen endocytosis by macrophages; further studies on this will be presented in addition to the results of the immunisation study.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.