31 resultados para Visual Odometry,Transformer,Deep learning
em Aston University Research Archive
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.
Resumo:
Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.
Resumo:
A critical review of previous research revealed that visual attention tests, such as the Useful Field of View (UFOV) test, provided the best means of detecting age-related changes to the visual system that could potentially increase crash risk. However, the question was raised as to whether the UFOV, which was regarded as a static visual attention test, could be improved by inclusion of kinetic targets that more closely represent the driving task. A computer program was written to provide more information about the derivation of UFOV test scores. Although this investigation succeeded in providing new information, some of the commercially protected UFOV test procedures still remain unknown. Two kinetic visual attention tests (DRTS1 and 2), developed at Aston University to investigate inclusion of kinetic targets in visual attention tests, were introduced. The UFOV was found to be more repeatable than either of the kinetic visual attention tests and learning effects or age did not influence these findings. Determinants of static and kinetic visual attention were explored. Increasing target eccentricity led to reduced performance on the UFOV and DRTS1 tests. The DRTS2 was not affected by eccentricity but this may have been due to the style of presentation of its targets. This might also have explained why only the DRTS2 showed laterality effects (i.e. better performance to targets presented on the left hand side of the road). Radial location, explored using the UFOV test, showed that subjects responded best to targets positioned to the horizontal meridian. Distraction had opposite effects on static and kinetic visual attention. While UFOV test performance declined with distraction, DRTS1 performance increased. Previous research had shown that this striking difference was to be expected. Whereas the detection of static targets is attenuated in the presence of distracting stimuli, distracting stimuli that move in a structured flow field enhances the detection of moving targets. Subjects reacted more slowly to kinetic compared to static targets, longitudinal motion compared to angular motion and to increased self-motion. However, the effects of longitudinal motion, angular motion, self-motion and even target eccentricity were caused by target edge speed variations arising because of optic flow field effects. The UFOV test was more able to detect age-related changes to the visual system than were either of the kinetic visual attention tests. The driving samples investigated were too limited to draw firm conclusions. Nevertheless, the results presented showed that neither the DRTS2 nor the UFOV tests were powerful tools for the identification of drivers prone to crashes or poor driving performance.
Resumo:
Background - The literature is not univocal about the effects of Peer Review (PR) within the context of constructivist learning. Due to the predominant focus on using PR as an assessment tool, rather than a constructivist learning activity, and because most studies implicitly assume that the benefits of PR are limited to the reviewee, little is known about the effects upon students who are required to review their peers. Much of the theoretical debate in the literature is focused on explaining how and why constructivist learning is beneficial. At the same time these discussions are marked by an underlying presupposition of a causal relationship between reviewing and deep learning. Objectives - The purpose of the study is to investigate whether the writing of PR feedback causes students to benefit in terms of: perceived utility about statistics, actual use of statistics, better understanding of statistical concepts and associated methods, changed attitudes towards market risks, and outcomes of decisions that were made. Methods - We conducted a randomized experiment, assigning students randomly to receive PR or non–PR treatments and used two cohorts with a different time span. The paper discusses the experimental design and all the software components that we used to support the learning process: Reproducible Computing technology which allows students to reproduce or re–use statistical results from peers, Collaborative PR, and an AI–enhanced Stock Market Engine. Results - The results establish that the writing of PR feedback messages causes students to experience benefits in terms of Behavior, Non–Rote Learning, and Attitudes, provided the sequence of PR activities are maintained for a period that is sufficiently long.
Resumo:
Introduction-The design of the UK MPharm curriculum is driven by the Royal Pharmaceutical Society of Great Britain (RPSGB) accreditation process and the EU directive (85/432/EEC).[1] Although the RPSGB is informed about teaching activity in UK Schools of Pharmacy (SOPs), there is no database which aggregates information to provide the whole picture of pharmacy education within the UK. The aim of the teaching, learning and assessment study [2] was to document and map current programmes in the 16 established SOPs. Recent developments in programme delivery have resulted in a focus on deep learning (for example, through problem based learning approaches) and on being more student centred and less didactic through lectures. The specific objectives of this part of the study were (a) to quantify the content and modes of delivery of material as described in course documentation and (b) having categorised the range of teaching methods, ask students to rate how important they perceived each one for their own learning (using a three point Likert scale: very important, fairly important or not important). Material and methods-The study design compared three datasets: (1) quantitative course document review, (2) qualitative staff interview and (3) quantitative student self completion survey. All 16 SOPs provided a set of their undergraduate course documentation for the year 2003/4. The documentation variables were entered into Excel tables. A self-completion questionnaire was administered to all year four undergraduates, using a pragmatic mixture of methods, (n=1847) in 15 SOPs within Great Britain. The survey data were analysed (n=741) using SPSS, excluding non-UK students who may have undertaken part of their studies within a non-UK university. Results and discussion-Interviews showed that individual teachers and course module leaders determine the choice of teaching methods used. Content review of the documentary evidence showed that 51% of the taught element of the course was delivered using lectures, 31% using practicals (includes computer aided learning) and 18% small group or interactive teaching. There was high uniformity across the schools for the first three years; variation in the final year was due to the project. The average number of hours per year across 15 schools (data for one school were not available) was: year 1: 408 hours; year 2: 401 hours; year 3: 387 hours; year 4: 401 hours. The survey showed that students perceived lectures to be the most important method of teaching after dispensing or clinical practicals. Taking the very important rating only: 94% (n=694) dispensing or clinical practicals; 75% (n=558) lectures; 52% (n=386) workshops, 50% (n=369) tutorials, 43% (n=318) directed study. Scientific laboratory practices were rated very important by only 31% (n=227). The study shows that teaching of pharmacy to undergraduates in the UK is still essentially didactic through a high proportion of formal lectures and with high levels of staff-student contact. Schools consider lectures still to be the most cost effective means of delivering the core syllabus to large cohorts of students. However, this does limit the scope for any optionality within teaching, the scope for small group work is reduced as is the opportunity to develop multi-professional learning or practice placements. Although novel teaching and learning techniques such as e-learning have expanded considerably over the past decade, schools of pharmacy have concentrated on lectures as the best way of coping with the huge expansion in student numbers. References [1] Council Directive. Concerning the coordination of provisions laid down by law, regulation or administrative action in respect of certain activities in the field of pharmacy. Official Journal of the European Communities 1985;85/432/EEC. [2] Wilson K, Jesson J, Langley C, Clarke L, Hatfield K. MPharm Programmes: Where are we now? Report commissioned by the Pharmacy Practice Research Trust., 2005.
Resumo:
The focus of this thesis is the extension of topographic visualisation mappings to allow for the incorporation of uncertainty. Few visualisation algorithms in the literature are capable of mapping uncertain data with fewer able to represent observation uncertainties in visualisations. As such, modifications are made to NeuroScale, Locally Linear Embedding, Isomap and Laplacian Eigenmaps to incorporate uncertainty in the observation and visualisation spaces. The proposed mappings are then called Normally-distributed NeuroScale (N-NS), T-distributed NeuroScale (T-NS), Probabilistic LLE (PLLE), Probabilistic Isomap (PIso) and Probabilistic Weighted Neighbourhood Mapping (PWNM). These algorithms generate a probabilistic visualisation space with each latent visualised point transformed to a multivariate Gaussian or T-distribution, using a feed-forward RBF network. Two types of uncertainty are then characterised dependent on the data and mapping procedure. Data dependent uncertainty is the inherent observation uncertainty. Whereas, mapping uncertainty is defined by the Fisher Information of a visualised distribution. This indicates how well the data has been interpolated, offering a level of ‘surprise’ for each observation. These new probabilistic mappings are tested on three datasets of vectorial observations and three datasets of real world time series observations for anomaly detection. In order to visualise the time series data, a method for analysing observed signals and noise distributions, Residual Modelling, is introduced. The performance of the new algorithms on the tested datasets is compared qualitatively with the latent space generated by the Gaussian Process Latent Variable Model (GPLVM). A quantitative comparison using existing evaluation measures from the literature allows performance of each mapping function to be compared. Finally, the mapping uncertainty measure is combined with NeuroScale to build a deep learning classifier, the Cascading RBF. This new structure is tested on the MNist dataset achieving world record performance whilst avoiding the flaws seen in other Deep Learning Machines.
Resumo:
As one of the most popular deep learning models, convolution neural network (CNN) has achieved huge success in image information extraction. Traditionally CNN is trained by supervised learning method with labeled data and used as a classifier by adding a classification layer in the end. Its capability of extracting image features is largely limited due to the difficulty of setting up a large training dataset. In this paper, we propose a new unsupervised learning CNN model, which uses a so-called convolutional sparse auto-encoder (CSAE) algorithm pre-Train the CNN. Instead of using labeled natural images for CNN training, the CSAE algorithm can be used to train the CNN with unlabeled artificial images, which enables easy expansion of training data and unsupervised learning. The CSAE algorithm is especially designed for extracting complex features from specific objects such as Chinese characters. After the features of articficial images are extracted by the CSAE algorithm, the learned parameters are used to initialize the first CNN convolutional layer, and then the CNN model is fine-Trained by scene image patches with a linear classifier. The new CNN model is applied to Chinese scene text detection and is evaluated with a multilingual image dataset, which labels Chinese, English and numerals texts separately. More than 10% detection precision gain is observed over two CNN models.
Resumo:
Human object recognition is considered to be largely invariant to translation across the visual field. However, the origin of this invariance to positional changes has remained elusive, since numerous studies found that the ability to discriminate between visual patterns develops in a largely location-specific manner, with only a limited transfer to novel visual field positions. In order to reconcile these contradicting observations, we traced the acquisition of categories of unfamiliar grey-level patterns within an interleaved learning and testing paradigm that involved either the same or different retinal locations. Our results show that position invariance is an emergent property of category learning. Pattern categories acquired over several hours at a fixed location in either the peripheral or central visual field gradually become accessible at new locations without any position-specific feedback. Furthermore, categories of novel patterns presented in the left hemifield are distinctly faster learnt and better generalized to other locations than those learnt in the right hemifield. Our results suggest that during learning initially position-specific representations of categories based on spatial pattern structure become encoded in a relational, position-invariant format. Such representational shifts may provide a generic mechanism to achieve perceptual invariance in object recognition.
Resumo:
This paper presents a case study of the use of a visual interactive modelling system to investigate issues involved in the management of a hospital ward. Visual Interactive Modelling systems are seen to offer the learner the opportunity to explore operational management issues from a varied perspective and to provide an interactive system in which the learner receives feedback on the consequences of their actions. However to maximise the potential learning experience for a student requires the recognition that they require task structure which helps them to understand the concepts involved. These factors can be incorporated into the visual interactive model by providing an interface customised to guide the student through the experimentation. Recent developments of VIM systems in terms of their connectivity with the programming language Visual Basic facilitates this customisation.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
Hemispheric differences in the learning and generalization of pattern categories were explored in two experiments involving sixteen patients with unilateral posterior, cerebral lesions in the left (LH) or right (RH) hemisphere. In each experiment participants were first trained to criterion in a supervised learning paradigm to categorize a set of patterns that either consisted of simple geometric forms (Experiment 1) or unfamiliar grey-level images (Experiment 2). They were then tested for their ability to generalize acquired categorical knowledge to contrast-reversed versions of the learning patterns. The results showed that RH lesions impeded category learning of unfamiliar grey-level images more severely than LH lesions, whereas this relationship appeared reversed for categories defined by simple geometric forms. With regard to generalization to contrast reversal, categorization performance of LH and RH patients was unaffected in the case of simple geometric forms. However, generalization to of contrast-reversed grey-level images distinctly deteriorated for patients with LH lesions relative to those with RH lesions, with the latter (but not the former) being consistently unable to identify the pattern manipulation. These findings suggest a differential use of contrast information in the representation of pattern categories in the two hemispheres. Such specialization appears in line with previous distinctions between a predominantly lefthemispheric, abstract-analytical and a righthemispheric, specific-holistic representation of object categories, and their prediction of a mandatory representation of contrast polarity in the RH. Some implications for the well-established dissociation of visual disorders for the recognition of faces and letters are discussed.
Resumo:
The thesis investigated progression of the central 10° visual field with structural changes at the macula in a cross-section of patients with varying degrees of agerelated macular degeneration (AMD). The relationships between structure and function were investigated for both standard and short-wavelength automated perimetry (SWAP). Factors known to influence the measure of visual field progression were considered, including the accuracy of the refractive correction on SWAP thresholds and the learning effect. Techniques of assessing the structure to function relationships between fundus images and the visual field were developed with computer programming and evaluated for repeatability. Drusen quantification of fundus photographs and retro-mode scanning laser ophthalmoscopic images was performed. Visual field progression was related to structural changes derived from both manual and automated methods. Principal Findings: • Visual field sensitivity declined with advancing stage of AMD. SWAP showed greater sensitivity to progressive changes than standard perimetry. • Defects were confined to the central 5°. SWAP defects occurred at similar locations but were deeper and wider than corresponding standard perimetry defects. • The central field became less uniform as severity of AMD increased. SWAP visual field indices of focal loss were of more importance when detecting early change in AMD, than indices of diffuse loss. • The decline in visual field sensitivity over stage of severity of AMD was not uniform, whereas a linear relationship was found between the automated measure of drusen area and visual field parameters. • Perimetry exhibited a stronger relationship with drusen area than other measures of visual function. • Overcorrection of the refraction for the working distance in SWAP should be avoided in subjects with insufficient accommodative facility. • The perimetric learning effect in the 10° field did not differ significantly between normal subjects and AMD patients. • Subretinal deposits appeared more numerous in retro-mode imaging than in fundus photography.
Resumo:
Original Paper European Journal of Information Systems (2001) 10, 135–146; doi:10.1057/palgrave.ejis.3000394 Organisational learning—a critical systems thinking discipline P Panagiotidis1,3 and J S Edwards2,4 1Deloitte and Touche, Athens, Greece 2Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK Correspondence: Dr J S Edwards, Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. E-mail: j.s.edwards@aston.ac.uk 3Petros Panagiotidis is Manager responsible for the Process and Systems Integrity Services of Deloitte and Touche in Athens, Greece. He has a BSc in Business Administration and an MSc in Management Information Systems from Western International University, Phoenix, Arizona, USA; an MSc in Business Systems Analysis and Design from City University, London, UK; and a PhD degree from Aston University, Birmingham, UK. His doctorate was in Business Systems Analysis and Design. His principal interests now are in the ERP/DSS field, where he serves as project leader and project risk managment leader in the implementation of SAP and JD Edwards/Cognos in various major clients in the telecommunications and manufacturing sectors. In addition, he is responsible for the development and application of knowledge management systems and activity-based costing systems. 4John S Edwards is Senior Lecturer in Operational Research and Systems at Aston Business School, Birmingham, UK. He holds MA and PhD degrees (in mathematics and operational research respectively) from Cambridge University. His principal research interests are in knowledge management and decision support, especially methods and processes for system development. He has written more than 30 research papers on these topics, and two books, Building Knowledge-based Systems and Decision Making with Computers, both published by Pitman. Current research work includes the effect of scale of operations on knowledge management, interfacing expert systems with simulation models, process modelling in law and legal services, and a study of the use of artifical intelligence techniques in management accounting. Top of pageAbstract This paper deals with the application of critical systems thinking in the domain of organisational learning and knowledge management. Its viewpoint is that deep organisational learning only takes place when the business systems' stakeholders reflect on their actions and thus inquire about their purpose(s) in relation to the business system and the other stakeholders they perceive to exist. This is done by reflecting both on the sources of motivation and/or deception that are contained in their purpose, and also on the sources of collective motivation and/or deception that are contained in the business system's purpose. The development of an organisational information system that captures, manages and institutionalises meaningful information—a knowledge management system—cannot be separated from organisational learning practices, since it should be the result of these very practices. Although Senge's five disciplines provide a useful starting-point in looking at organisational learning, we argue for a critical systems approach, instead of an uncritical Systems Dynamics one that concentrates only on the organisational learning practices. We proceed to outline a methodology called Business Systems Purpose Analysis (BSPA) that offers a participatory structure for team and organisational learning, upon which the stakeholders can take legitimate action that is based on the force of the better argument. In addition, the organisational learning process in BSPA leads to the development of an intrinsically motivated information organisational system that allows for the institutionalisation of the learning process itself in the form of an organisational knowledge management system. This could be a specific application, or something as wide-ranging as an Enterprise Resource Planning (ERP) implementation. Examples of the use of BSPA in two ERP implementations are presented.
Resumo:
Knowledge elicitation is a well-known bottleneck in the production of knowledge-based systems (KBS). Past research has shown that visual interactive simulation (VIS) could effectively be used to elicit episodic knowledge that is appropriate for machine learning purposes, with a view to building a KBS. Nonetheless, the VIS-based elicitation process still has much room for improvement. Based in the Ford Dagenham Engine Assembly Plant, a research project is being undertaken to investigate the individual/joint effects of visual display level and mode of problem case generation on the elicitation process. This paper looks at the methodology employed and some issues that have been encountered to date. Copyright © 2007 Inderscience Enterprises Ltd.
Resumo:
This is a review of studies that have investigated the proposed rehabilitative benefit of tinted lenses and filters for people with low vision. Currently, eye care practitioners have to rely on marketing literature and anecdotal reports from users when making recommendations for tinted lens or filter use in low vision. Our main aim was to locate a prescribing protocol that was scientifically based and could assist low vision specialists with tinted lens prescribing decisions. We also wanted to determine if previous work had found any tinted lens/task or tinted lens/ocular condition relationships, i.e. were certain tints or filters of use for specific tasks or for specific eye conditions. Another aim was to provide a review of previous research in order to stimulate new work using modern experimental designs. Past studies of tinted lenses and low vision have assessed effects on visual acuity (VA), grating acuity, contrast sensitivity (CS), visual field, adaptation time, glare, photophobia and TV viewing. Objective and subjective outcome measures have been used. However, very little objective evidence has been provided to support anecdotal reports of improvements in visual performance. Many studies are flawed in that they lack controls for investigator bias, and placebo, learning and fatigue effects. Therefore, the use of tinted lenses in low vision remains controversial and eye care practitioners will have to continue to rely on anecdotal evidence to assist them in their prescribing decisions. Suggestions for future research, avoiding some of these experimental shortcomings, are made. © 2002 The College of Optometrists.