32 resultados para Vision-Based Forced Landing
em Aston University Research Archive
Resumo:
There have been two main approaches to feature detection in human and computer vision - based either on the luminance distribution and its spatial derivatives, or on the spatial distribution of local contrast energy. Thus, bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of features in images? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square-wave and all Fourier components have a common phase. Observers used a cursor to mark where bars and edges were seen for different test phases (Experiment 1) or judged the spatial alignment of contours that had different phases (e.g. 0 degrees and 45 degrees ; Experiment 2). The feature positions defined by both tasks shifted systematically to the left or right according to the sign of the phase offset, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks (bars) and gradient peaks (edges), but not by energy peaks which (by design) predicted no shift at all. These results encourage models based on a Gaussian-derivative framework, but do not support the idea that human vision uses points of phase alignment to find local, first-order features. Nevertheless, we argue that both approaches are presently incomplete and a better understanding of early vision may combine insights from both. (C)2004 Elsevier Ltd. All rights reserved.
Resumo:
We present a vision and a proposal for using Semantic Web technologies in the organic food industry. This is a very knowledge intensive industry at every step from the producer, to the caterer or restauranteur, through to the consumer. There is a crucial need for a concept of environmental audit which would allow the various stake holders to know the full environmental impact of their economic choices. This is a di?erent and parallel form of knowledge to that of price. Semantic Web technologies can be used e?ectively for the calculation and transfer of this type of knowledge (together with other forms of multimedia data) which could contribute considerably to the commercial and educational impact of the organic food industry. We outline how this could be achieved as our essential ob jective is to show how advanced technologies could be used to both reduce ecological impact and increase public awareness.
Resumo:
The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention.
Resumo:
This is a review of studies that have investigated the proposed rehabilitative benefit of tinted lenses and filters for people with low vision. Currently, eye care practitioners have to rely on marketing literature and anecdotal reports from users when making recommendations for tinted lens or filter use in low vision. Our main aim was to locate a prescribing protocol that was scientifically based and could assist low vision specialists with tinted lens prescribing decisions. We also wanted to determine if previous work had found any tinted lens/task or tinted lens/ocular condition relationships, i.e. were certain tints or filters of use for specific tasks or for specific eye conditions. Another aim was to provide a review of previous research in order to stimulate new work using modern experimental designs. Past studies of tinted lenses and low vision have assessed effects on visual acuity (VA), grating acuity, contrast sensitivity (CS), visual field, adaptation time, glare, photophobia and TV viewing. Objective and subjective outcome measures have been used. However, very little objective evidence has been provided to support anecdotal reports of improvements in visual performance. Many studies are flawed in that they lack controls for investigator bias, and placebo, learning and fatigue effects. Therefore, the use of tinted lenses in low vision remains controversial and eye care practitioners will have to continue to rely on anecdotal evidence to assist them in their prescribing decisions. Suggestions for future research, avoiding some of these experimental shortcomings, are made. © 2002 The College of Optometrists.
Resumo:
Adapting to blurred images makes in-focus images look too sharp, and vice-versa (Webster et al, 2002 Nature Neuroscience 5 839 - 840). We asked how such blur adaptation is related to contrast adaptation. Georgeson (1985 Spatial Vision 1 103 - 112) found that grating contrast adaptation followed a subtractive rule: perceived (matched) contrast of a grating was fairly well predicted by subtracting some fraction k(~0.3) of the adapting contrast from the test contrast. Here we apply that rule to the responses of a set of spatial filters at different scales and orientations. Blur is encoded by the pattern of filter response magnitudes over scale. We tested two versions - the 'norm model' and 'fatigue model' - against blur-matching data obtained after adaptation to sharpened, in-focus or blurred images. In the fatigue model, filter responses are simply reduced by exposure to the adapter. In the norm model, (a) the visual system is pre-adapted to a focused world and (b) discrepancy between observed and expected responses to the experimental adapter leads to additional reduction (or enhancement) of filter responses during experimental adaptation. The two models are closely related, but only the norm model gave a satisfactory account of results across the four experiments analysed, with one free parameter k. This model implies that the visual system is pre-adapted to focused images, that adapting to in-focus or blank images produces no change in adaptation, and that adapting to sharpened or blurred images changes the state of adaptation, leading to changes in perceived blur or sharpness.
Resumo:
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.
Resumo:
Edge detection is crucial in visual processing. Previous computational and psychophysical models have often used peaks in the gradient or zero-crossings in the 2nd derivative to signal edges. We tested these approaches using a stimulus that has no such features. Its luminance profile was a triangle wave, blurred by a rectangular function. Subjects marked the position and polarity of perceived edges. For all blur widths tested, observers marked edges at or near 3rd derivative maxima, even though these were not 1st derivative maxima or 2nd derivative zero-crossings, at any scale. These results are predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test, we added a ramp of variable slope to the blurred triangle-wave luminance profile. The ramp has no effect on the (linear) 2nd or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing one edge as the ramp gradient increases. Results of two experiments confirmed such a shift, thus supporting the new model. [Supported by the Engineering and Physical Sciences Research Council].
Resumo:
In many models of edge analysis in biological vision, the initial stage is a linear 2nd derivative operation. Such models predict that adding a linear luminance ramp to an edge will have no effect on the edge's appearance, since the ramp has no effect on the 2nd derivative. Our experiments did not support this prediction: adding a negative-going ramp to a positive-going edge (or vice-versa) greatly reduced the perceived blur and contrast of the edge. The effects on a fairly sharp edge were accurately predicted by a nonlinear multi-scale model of edge processing [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision], in which a half-wave rectifier comes after the 1st derivative filter. But we also found that the ramp affected perceived blur more profoundly when the edge blur was large, and this greater effect was not predicted by the existing model. The model's fit to these data was much improved when the simple half-wave rectifier was replaced by a threshold-like transducer [May, K. A. & Georgeson, M. A. (2007). Blurred edges look faint, and faint edges look sharp: The effect of a gradient threshold in a multi-scale edge coding model. Vision Research, 47, 1705-1720.]. This modified model correctly predicted that the interaction between ramp gradient and edge scale would be much larger for blur perception than for contrast perception. In our model, the ramp narrows an internal representation of the gradient profile, leading to a reduction in perceived blur. This in turn reduces perceived contrast because estimated blur plays a role in the model's estimation of contrast. Interestingly, the model predicts that analogous effects should occur when the width of the window containing the edge is made narrower. This has already been confirmed for blur perception; here, we further support the model by showing a similar effect for contrast perception. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (first-derivative) filter, or as zero-crossings (ZCs) in the second-derivative. A variety of multi-scale models are based on this idea. We tested this approach by devising a stimulus that has no local peaks of gradient and no ZCs, at any scale. Our stimulus profile is analogous to the classic Mach-band stimulus, but it is the local luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux. The luminance profile is a smoothed triangle wave and is obtained by integrating the gradient profile. Subjects used a cursor to mark the position and polarity of perceived edges. For all the ramp-widths tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These new Mach edges correspond to peaks and troughs in the third-derivative. They are analogous to Mach bands - light and dark bars are seen where there are no luminance peaks but there are peaks in the second derivative. Here, peaks in the third derivative were seen as light-to-dark edges, troughs as dark-to-light edges. Thus Mach edges are inconsistent with many standard edge detectors, but are nicely predicted by a new model that uses a (nonlinear) third-derivative operator to find edge points.
Resumo:
There have been two main approaches to feature detection in human and computer vision - luminance-based and energy-based. Bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of elements in a 3-element contour-alignment task? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square wave and Fourier components in a given image have a common phase. Observers judged whether the centre element (eg ±458 phase) was to the left or right of the flanking pair (eg 0º phase). Lateral offset of the centre element was varied to find the point of subjective alignment from the fitted psychometric function. This point shifted systematically to the left or right according to the sign of the centre phase, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks and other derivative-based features, but not by energy peaks which (by design) predicted no shift at all. These results on contour alignment agree well with earlier ones from a more explicit feature-marking task, and strongly suggest that human vision does not use local energy peaks to locate basic first-order features. [Supported by the Wellcome Trust (ref: 056093)]
Resumo:
PURPOSE. A methodology for noninvasively characterizing the three-dimensional (3-D) shape of the complete human eye is not currently available for research into ocular diseases that have a structural substrate, such as myopia. A novel application of a magnetic resonance imaging (MRI) acquisition and analysis technique is presented that, for the first time, allows the 3-D shape of the eye to be investigated fully. METHODS. The technique involves the acquisition of a T2-weighted MRI, which is optimized to reveal the fluid-filled chambers of the eye. Automatic segmentation and meshing algorithms generate a 3-D surface model, which can be shaded with morphologic parameters such as distance from the posterior corneal pole and deviation from sphericity. Full details of the method are illustrated with data from 14 eyes of seven individuals. The spatial accuracy of the calculated models is demonstrated by comparing the MRI-derived axial lengths with values measured in the same eyes using interferometry. RESULTS. The color-coded eye models showed substantial variation in the absolute size of the 14 eyes. Variations in the sphericity of the eyes were also evident, with some appearing approximately spherical whereas others were clearly oblate and one was slightly prolate. Nasal-temporal asymmetries were noted in some subjects. CONCLUSIONS. The MRI acquisition and analysis technique allows a novel way of examining 3-D ocular shape. The ability to stratify and analyze eye shape, ocular volume, and sphericity will further extend the understanding of which specific biometric parameters predispose emmetropic children subsequently to develop myopia. Copyright © Association for Research in Vision and Ophthalmology.
Community-Based Study of the Association of High Myopia in Children with Ocular and Systemic Disease
Resumo:
Purpose. High myopia in childhood is associated with important ocular and systemic conditions. However in the UK, high myopia in early childhood is not specifically identified in current ophthalmology, optometry, or orthoptic protocols for screening, referral, or investigation. An ongoing study in the West Midlands, UK, is investigating high myopia presenting to community health care clinics with the aim of compiling guidelines for assessment and subsequent referral. Methods. Children with high myopia were identified from community optometric and orthoptic sources and invited for an ophthalmology and optometry examination to ascertain possible ocular or systemic disease. Results. High myopia with no associated ocular or systemic condition was present in 15 (56%) of the children. In seven children (25%), associated ocular problems were found including unrecognized retinal dystrophies and amblyopia. Systemic disorders associated with high myopia were found in five children (19%) and included Sticklers syndrome, Weill-Marchesani syndrome, and homocystinuria. In one child, the diagnosis made before this study was found to be incorrect, and in another child, the results were inconclusive. In two cases, the diagnosis of a systemic condition in the child led to the identification of the disease in at least one relative. Conclusions. There is a high prevalence of ocular and systemic abnormality in young children seen in the community. Optometric and ophthalmologic assessment of children less than 10 years with myopia ≥5 D is likely to identify significant ocular or systemic disease, a proportion of which will respond to medical intervention. Detection and prompt referral of these cases by community health care services may be expected to prolong vision and possibly life expectancy.
Resumo:
The human visual system is sensitive to second-order modulations of the local contrast (CM) or amplitude (AM) of a carrier signal. Second-order cues are detected independently of first-order luminance signals; however, it is not clear why vision should benet from second-order sensitivity. Analysis of the first-and second-order contents of natural images suggests that these cues tend to occur together, but their phase relationship varies. We have shown that in-phase combinations of LM and AM are perceived as a shaded corrugated surface whereas the anti-phase combination can be seen as corrugated when presented alone or as a flat material change when presented in a plaid containing the in-phase cue. We now extend these findings using new stimulus types and a novel haptic matching task. We also introduce a computational model based on initially separate first-and second-order channels that are combined within orientation and subsequently across orientation to produce a shading signal. Contrast gain control allows the LM + AM cue to suppress responses to the LM-AM when presented in a plaid. Thus, the model sees LM -AM as flat in these circumstances. We conclude that second-order vision plays a key role in disambiguating the origin of luminance changes within an image. © ARVO.
Resumo:
This thesis presents a study of how edges are detected and encoded by the human visual system. The study begins with theoretical work on the development of a model of edge processing, and includes psychophysical experiments on humans, and computer simulations of these experiments, using the model. The first chapter reviews the literature on edge processing in biological and machine vision, and introduces the mathematical foundations of this area of research. The second chapter gives a formal presentation of a model of edge perception that detects edges and characterizes their blur, contrast and orientation, using Gaussian derivative templates. This model has previously been shown to accurately predict human performance in blur matching tasks with several different types of edge profile. The model provides veridical estimates of the blur and contrast of edges that have a Gaussian integral profile. Since blur and contrast are independent parameters of Gaussian edges, the model predicts that varying one parameter should not affect perception of the other. Psychophysical experiments showed that this prediction is incorrect: reducing the contrast makes an edge look sharper; increasing the blur reduces the perceived contrast. Both of these effects can be explained by introducing a smoothed threshold to one of the processing stages of the model. It is shown that, with this modification,the model can predict the perceived contrast and blur of a number of edge profiles that differ markedly from the ideal Gaussian edge profiles on which the templates are based. With only a few exceptions, the results from all the experiments on blur and contrast perception can be explained reasonably well using one set of parameters for each subject. In the few cases where the model fails, possible extensions to the model are discussed.
Resumo:
The aim of this work was to investigate human contrast perception at various contrast levels ranging from detection threshold to suprathreshold levels by using psychophysical techniques. The work consists of two major parts. The first part deals with contrast matching, and the second part deals with contrast discrimination. Contrast matching technique was used to determine when the perceived contrasts of different stimuli were equal. The effects of spatial frequency, stimulus area, image complexity and chromatic contrast on contrast detection thresholds and matches were studied. These factors influenced detection thresholds and perceived contrast at low contrast levels. However, at suprathreshold contrast levels perceived contrast became directly proportional to the physical contrast of the stimulus and almost independent of factors affecting detection thresholds. Contrast discrimination was studied by measuring contrast increment thresholds which indicate the smallest detectable contrast difference. The effects of stimulus area, external spatial image noise and retinal illuminance were studied. The above factors affected contrast detection thresholds and increment thresholds measured at low contrast levels. At high contrast levels, contrast increment thresholds became very similar so that the effect of these factors decreased. Human contrast perception was modelled by regarding the visual system as a simple image processing system. A visual signal is first low-pass filtered by the ocular optics. This is followed by spatial high-pass filtering by the neural visual pathways, and addition of internal neural noise. Detection is mediated by a local matched filter which is a weighted replica of the stimulus whose sampling efficiency decreases with increasing stimulus area and complexity. According to the model, the signals to be compared in a contrast matching task are first transferred through the early image processing stages mentioned above. Then they are filtered by a restoring transfer function which compensates for the low-level filtering and limited spatial integration at high contrast levels. Perceived contrasts of the stimuli are equal when the restored responses to the stimuli are equal. According to the model, the signals to be discriminated in a contrast discrimination task first go through the early image processing stages, after which signal dependent noise is added to the matched filter responses. The decision made by the human brain is based on the comparison between the responses of the matched filters to the stimuli, and the accuracy of the decision is limited by pre- and post-filter noises. The model for human contrast perception could accurately describe the results of contrast matching and discrimination in various conditions.