4 resultados para Vision Testing

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A sizeable amount of the testing in eye care, requires either the identification of targets such as letters to assess functional vision, or the subjective evaluation of imagery by an examiner. Computers can render a variety of different targets on their monitors and can be used to store and analyse ophthalmic images. However, existing computing hardware tends to be large, screen resolutions are often too low, and objective assessments of ophthalmic images unreliable. Recent advances in mobile computing hardware and computer-vision systems can be used to enhance clinical testing in optometry. High resolution touch screens embedded in mobile devices, can render targets at a wide variety of distances and can be used to record and respond to patient responses, automating testing methods. This has opened up new opportunities in computerised near vision testing. Equally, new image processing techniques can be used to increase the validity and reliability of objective computer vision systems. Three novel apps for assessing reading speed, contrast sensitivity and amplitude of accommodation were created by the author to demonstrate the potential of mobile computing to enhance clinical measurement. The reading speed app could present sentences effectively, control illumination and automate the testing procedure for reading speed assessment. Meanwhile the contrast sensitivity app made use of a bit stealing technique and swept frequency target, to rapidly assess a patient’s full contrast sensitivity function at both near and far distances. Finally, customised electronic hardware was created and interfaced to an app on a smartphone device to allow free space amplitude of accommodation measurement. A new geometrical model of the tear film and a ray tracing simulation of a Placido disc topographer were produced to provide insights on the effect of tear film breakdown on ophthalmic images. Furthermore, a new computer vision system, that used a novel eye-lash segmentation technique, was created to demonstrate the potential of computer vision systems for the clinical assessment of tear stability. Studies undertaken by the author to assess the validity and repeatability of the novel apps, found that their repeatability was comparable to, or better, than existing clinical methods for reading speed and contrast sensitivity assessment. Furthermore, the apps offered reduced examination times in comparison to their paper based equivalents. The reading speed and amplitude of accommodation apps correlated highly with existing methods of assessment supporting their validity. Their still remains questions over the validity of using a swept frequency sine-wave target to assess patient’s contrast sensitivity functions as no clinical test provides the range of spatial frequencies and contrasts, nor equivalent assessment at distance and near. A validation study of the new computer vision system found that the authors tear metric correlated better with existing subjective measures of tear film stability than those of a competing computer-vision system. However, repeatability was poor in comparison to the subjective measures due to eye lash interference. The new mobile apps, computer vision system, and studies outlined in this thesis provide further insight into the potential of applying mobile and image processing technology to enhance clinical testing by eye care professionals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurate colour vision testing requires using the correct illumination. With the plethora of 'daylight' lamps available, is there a cost-effective alternative to the discontinued MacBeth Easel lamp? Smoking is a known risk factor for macula degeneration. As the macula is responsible for colour discrimination, any toxin that affects it has the potential to influence colour discrimination. Aims: To find a costeffective light source for colour vision testing. To investigate the effect of smoking on colour discrimination. To explore how deuteranomalous trichromats compare with normal trichromats. Methods: Using the Ishihara colour vision test subjects were classified into the groups: 'Normal/Control', 'Smoker/Test', and 'Case Study' (subjects who failed the screening test and did not smoke). They completed the Farnsworth Munsell 100 Hue test under each of the three light sources: Phillips EcoHalo Twist (tungsten halogen - THL), Kosnic KCF07ALU/GU10-865 (compact fluorescent- CFL), and Deal Guardian Ltd. GU103X2WA4B-60 (light-emitting diode - LED) Results: 42 subjects took part in the study: 18 in the Normal/Control group, 18 in the Smoker/Test group, and 6 in the Case Study group. For the Normal/Control group the total error scores (TESs) were significantly lower with the CFL than with the THL (p = 0.017) as it was for the Case Study group (p = 0.009). No significant differences were found between the Normal/Control group and the Smoker/Test group for each light source. Decision tree analysis found pack years to be a significant variable for TES. Discussion: All three light sources were comparable with previous studies. The CFL provided better colour discrimination than the LED despite them both being 6500 K. Deuteranomalous trichromats showed a greatest deviation than normal trichromats using the LED. Conclusions: The Kosnic KCF07ALU/GU10-865 is a cost-effective alternative for colour vision testing. Smoking appears to have an effect on colour vision, but requires further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal aim of this work was to examine the effects of antiepileptic drugs (AEDs) on vision. Vigabatrin acts by increasing GABA at brain inhibitory synapses by irreversibly binding to GABA-transaminase. Remacemide is a novel non-competitive NMDA receptor antagonist and fast sodium channel inhibitor that results in the inhibition of the NMDA receptors located in the neuronal membrane calcium channels increasing glutamate in the brain. Vigabatrin has been shown to cause a specific pattern of visual field loss, as one in three adults taking vigabatrin have shown a bilateral concentric constriction. Remacemide has unknown effects on vision. The majority of studies of the effects of AEDs on vision have not included the paediatric population due to difficulties assessing visual field function using standard perimetry testing. Evidently an alternative test is required to establish and monitor visual field problems associated with AEDs both in children and in adults who cannot comply with perimetry. In order to test paediatric patients exposed to vigabatrin, a field-specific visual evoked potential was developed. Other tests performed on patients taking either vigabatrin or remacemide were electroretinograms, electro-oculograms, multifocal VEPs and perimetry. Comparing these tests to perimetry results from vigabatrin patients the field specific VEP was found to have a high sensitivity and specificity, as did the 30Hz flicker amplitude. The modified VEP was also found to provide useful results in vigabatrin patients. Remacemide did not produce a similar visual field loss to vigabatrin although macular vision was affected. The field specific VEP is a useful method for detecting vigabatrin associated visual field loss that is well tolerated by young children. This technique combined with the ERG under light adapted (30Hz flicker) condition is presently the superior method for detecting vigabatrin-attributed peripheral field defects present in children below the developmental age of 9. The effects of AEDs on vision should be monitored carefully and the use of multifocal stimulation allows for specific areas of the retina and visual pathway to be monitored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Citation information: Armstrong RA, Davies LN, Dunne MCM & Gilmartin B. Statistical guidelines for clinical studies of human vision. Ophthalmic Physiol Opt 2011, 31, 123-136. doi: 10.1111/j.1475-1313.2010.00815.x ABSTRACT: Statistical analysis of data can be complex and different statisticians may disagree as to the correct approach leading to conflict between authors, editors, and reviewers. The objective of this article is to provide some statistical advice for contributors to optometric and ophthalmic journals, to provide advice specifically relevant to clinical studies of human vision, and to recommend statistical analyses that could be used in a variety of circumstances. In submitting an article, in which quantitative data are reported, authors should describe clearly the statistical procedures that they have used and to justify each stage of the analysis. This is especially important if more complex or 'non-standard' analyses have been carried out. The article begins with some general comments relating to data analysis concerning sample size and 'power', hypothesis testing, parametric and non-parametric variables, 'bootstrap methods', one and two-tail testing, and the Bonferroni correction. More specific advice is then given with reference to particular statistical procedures that can be used on a variety of types of data. Where relevant, examples of correct statistical practice are given with reference to recently published articles in the optometric and ophthalmic literature.