9 resultados para Visible and ultraviolet light

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to the solar ultraviolet spectrum that penetrates the Earth's stratosphere (UVA and UVB) causes cellular DNA damage within skin cells. This damage is elicited directly through absorption of energy (UVB), and indirectly through intermediates such as sensitizer radicals and reactive oxygen species (UVA). DNA damage is detected as strand breaks or as base lesions, the most common lesions being 8-hydroxydeoxyguanosine (8OHdG) from UVA exposure and cyclobutane pyrimidine dimers from UVB exposure. The presence of these products in the genome may cause misreading and misreplication. Cells are protected by free radical scavengers that remove potentially mutagenic radical intermediates. In addition, the glutathione-S-transferase family can catalyze the removal of epoxides and peroxides. An extensive repair capacity exists for removing (1) strand breaks, (2) small base modifications (8OHdG), and (3) bulky lesions (cyclobutane pyrimidine dimers). UV also stimulates the cell to produce early response genes that activate a cascade of signaling molecules (e.g., protein kinases) and protective enzymes (e.g., haem oxygenase). The cell cycle is restricted via p53-dependent and -independent pathways to facilitate repair processes prior to replication and division. Failure to rescue the cell from replication block will ultimately lead to cell death, and apoptosis may be induced. The implications for UV-induced genotoxicity in disease are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reported are observations and measurements of the inscription of fibre Bragg gratings in two different types of microstructured polymer optical fibre: few-moded and endlessly single mode. Contrary to FBG inscription in silica microstructured fibre, where high energy laser pulses are a prerequisite, we have successfully used a low power CW laser source operating at 325nm to produce 1-cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report observations and measurements of the inscription of fiber Bragg gratings (FBGs) in two different types of microstructured polymer optical fiber: few-mode and an endlessly single mode. Contrary to the FBG inscription in silica microstructured fiber, where high-energy laser pulses are a prerequisite, we have successfully used a low-power cw laser source operating at 325 nm to produce 1 cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal burns of subthreshold intensity created using micropulsed diode laser, which remain clinically invisible, have been shown to be successful in treating macular edema while minimizing the risk of collateral damage to the retina. A study was conducted to determine whether spectral domain optical coherence tomography (SD-OCT) could be used to detect subthreshold retinal burns created using the 532-nm green wavelength laser. A series of retinal burns of gradually decreasing intensity were created in 10 eyes. Retinal burns produced with duration of laser exposure of 0.03 second or less, although clinically invisible, were detectable on the SD-OCT scan as increased retinal reflectivity confined to the outer retinal layers. This series demonstrates the potential of using SD-OCT imaging to verify delivery of subthreshold laser burns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation Purpose:We conducted a study to determine if the spectral domain optical coherence tomography (SD-OCT) could be used as a tool to assess effective delivery of threshold and subthreshold laser burns created using 532nm green wavelength laser. Methods:10 patients planned for panretinal photocoagulation (PRP) for proliferative diabetic retinopathy were included in this study. Before initiating the full PRP, a row of moderately white laser burns as used for conventional PRP was created using 532 nm laser set at threshold power for 0.1 second with 300 microns spot size. Further rows of laser burns were created by altering the duration and power settings on the laser device. The area of the retina irradiated with laser was imaged using the Topcon SD-OCT within a few minutes of laser treatment. Results:Laser burns created using threshold power were seen on the OCT scan in all cases as a homogenous diffuse increase in reflectivity extending across the full thickness of retina (Fig 1). Retinal burns created by lowering the duration of laser pulse to 0.01s were barely visible ophthalmoscopically but were clearly detectable on the OCT scan as a localised, well-defined area of increased tissue reflectivity (Fig 2). Conclusions:OCT is a useful to tool to assess the delivery of laser burns created using the 532 nm green laser. Burns of a subthreshold intensity that may not be visible ophthalmoscopically result in retinal changes that are clearly detectable on OCT imaging. Further studies would be needed to assess the clinical effectiveness of subthreshold laser treatment for retinal vascular diseases using the 532 nm green laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoreactive liposomes have been exploited as a means of developing 3D tissue constructs. Liposomes formulated using the photosensitive lipid 1,2-bis(4-(n-butyl)phenylazo-4′-phenylbutyroyl)phosphatidylcholine (Bis Azo PC), which undergoes conformational change on stimulation with long wavelength ultraviolet light, were prepared with entrapped CaCl2 before being incorporated into a 4% alginate solution. It was shown that stimulation of the photosensitive lipid using a light emitting diode (LED) (peak emission at 385 nm, dose equivalent to 9 mJ/cm2) caused the release of liposome-entrapped CaCl2, resulting in cross-linking of the alginate solution and immobilisation of bone-derived cells over a range of seeding densities, approximately 97% of which remained viable for periods of up to 14 days in culture. Entrapment volumes of a variety of liposome types were evaluated and interdigitating fusion vesicles were identified as having the highest payload (24%), however the inclusion of cholesterol as a means of shifting Bis Azo PC sensitivity into the visible light wavelengths resulted in an approximately 10-fold reduction in calcium entrapment. This application of light-sensitised liposomes offers the potential to create complex tissue engineering substrates containing cells immobilised in precise locations, in contrast with substrates onto which cells are seeded post-production. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing degradable hydrogels is complicated by the structural and temporal complexities of the gel and evolving tissue. A major challenge is to create scaffolds with sufficient mechanical properties to restore initial function while simultaneously controlling temporal changes in the gel structure to facilitate tissue formation. Poly(ethylene glycol) was used in this work, to form biodegradable poly(ethylene glycol)-based hydrogels with hydrolyzable poly-l-lactide segments in the backbone. Non-degradable poly(ethylene glycol) was also introduced in the formulation to obtain control of the degradation profile that encompasses cell growth and new tissue formation. The dependence on polymer composition was observed by higher degradation profiles and decreased mechanical properties as the content of degradable segments was increased in the formulation. Based on in vitro tests, no toxicity of extracts or biomaterial in direct contact with human adipose tissue stem cells was observed, and the ultraviolet light treatment did not affect the proliferation capacity of the cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the effects of light filters on reading speed in normal and low vision due to age-related macular degeneration (AMD). Methods: Reading speed was determined for 12 subjects with normal vision and 12 subjects with non-exudative AMD using stationary lowercase nonsensical print in Times Roman font and four light filters; a yellow Corning Photochromic Filter (CPF) 450, a grey neural density (ND) filter, an individual filter obtained using the Intuitive Colorimeter® and a clear filter. Results: There was no statistically significant light filter effect on reading speed for the normal subjects. The AMD group demonstrated a statistically significant 5% average improvement in reading speed with the CPF450 compared with the other filters although some AMD subjects had improvements of 10-15%. Conclusions: Light filters obtained using the Intuitive Colorimeter® performed poorly when compared with the CPF450, ND and clear filters for both the study groups. For the AMD group, average reading speed was statistically greater with the CPF450 than the other filters, however it is questionable whether the improvement (5%) would be clinically significant. As some of the subjects with AMD had greater improvements with the CPF450 we advocate clinical assessment of light filters using existing protocols on an individual basis. © 2004 The College of Optometrists.