6 resultados para Virulence factors

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Propionibacterium acnes, a common skin organism, is most notably recognized for its role in acne vulgaris. It also causes postoperative and device-related infections and has been associated with a number of other conditions such as sarcoidosis and synovitis, acne, pustulosis, hyperostosis and osteitis (SAPHO), although its precise role as a causative agent remains to be determined. Propionibacterium acnes produces a number of virulence factors and is well known for its inflammatory and immunomodulatory properties. Recent publication of the P. acnes genome should provide further insights into the pathogenic capabilities of the organism and potentially lead to the development of new therapies. © 2006 The Society for Applied Microbiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continuing threat of infectious disease and future pandemics, coupled to the continuous increase of drug-resistant pathogens, makes the discovery of new and better vaccines imperative. For effective vaccine development, antigen discovery and validation is a prerequisite. The compilation of information concerning pathogens, virulence factors and antigenic epitopes has resulted in many useful databases. However, most such immunological databases focus almost exclusively on antigens where epitopes are known and ignore those for which epitope information was unavailable. We have compiled more than 500 antigens into the AntigenDB database, making use of the literature and other immunological resources. These antigens come from 44 important pathogenic species. In AntigenDB, a database entry contains information regarding the sequence, structure, origin, etc. of an antigen with additional information such as B and T-cell epitopes, MHC binding, function, gene-expression and post translational modifications, where available. AntigenDB also provides links to major internal and external databases. We shall update AntigenDB on a rolling basis, regularly adding antigens from other organisms and extra data analysis tools. AntigenDB is available freely at http://www.imtech.res.in/raghava/antigendb and its mirror site http://www.bic.uams.edu/raghava/antigendb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clostridium difficile is at present one of the most common nosocomial infections in the developed world. Hypervirulent strains (PCR ribotype 027) of C. difficile which produce enhanced levels of toxins have also been associated with other characteristics such as a greater rate of sporulation and resistance to fluoroquinolones. Infection due to C. difficile PCR ribotype 027 has also been associated with greater rates of morbidity and mortality. The aim of this thesis was to investigate both the phenotypic and genotypic characteristics of two populations of toxigenic clinical isolates of C. difficile which were recovered from two separate hospital trusts within the UK. Phenotypic characterisation of the isolates was undertaken using analytical profile indexes (APIs), minimum inhibitory concentrations(MICs) and S-layer protein typing. In addition to this, isolates were also investigated for the production of a range of extracellular enzymes as potential virulence factors. Genotypic characterisation was performed using a random amplification of polymorphic DNA(RAPD) PCR protocol which was fully optimised in this study, and the gold standard method, PCR ribotyping. The discriminatory power of both methods was compared and the similarity between the different isolates also analysed. Associations between the phenotypic and genotypic characteristics and the recovery location of the isolate were then investigated. Extracellular enzyme production and API testing revealed little variation between the isolates; with S-layer typing demonstrating low discrimination. Minimum inhibitory concentrations did not identify any resistance towards either vancomycin or metronidazole; there were however significant differences in the distribution of antibiogram profiles of isolates recovered from the two different trusts. The RAPD PCR protocol was successfully optimised and alongside PCR ribotyping, effectively typed all of the clinical isolates and also identified differences in the number of types defined between the two locations. Both PCR ribotyping and RAPD demonstrated similar discriminatory power; however, the two genotyping methods did not generate amplicons that mapped directly onto each other and therefore clearly characterised isolates based on different genomic markers. The RAPD protocol also identified different subtypes within PCR ribotypes, therefore demonstrating that all isolates defined as a particular PCR ribotype were not the same strain. No associations could be demonstrated between the phenotypic and genotypic characteristics observed; however, the location from which an isolate was recovered did appear to influence antibiotic resistance and genotypic characteristics. The phenotypic and genotypic characteristics observed amongst the C. difficile isolates in this study, may provide a basis for the identification of further targets which may be potentially incorporated into future methods for the characterisation of C. difficile isolates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Postantibiotic effect (PAE) describes the suppression of microbial growth occurring after a short exposure to an antimicrobial agent. PAE appears to be a property of the majority of antimicrobial agents and is demonstrated by a wide variety of microorganisms. At present, carbapenems and penems are the only members of the -lactam group of antimicrobial agents that exhibit a significant PAE on Gram-negative bacilli. A standardised method was developed to evaluate the in vitro PAE of three carbapenems; imipenem, meropenem and biapenem on Gram-negative bacteria under reproducible laboratory conditions that partially mimicked those occurring in vivo. The effects on carbapenem PAE of the method of antimicrobial removal, concentration, exposure duration, inoculum size, inoculum growth phase, multiple exposures and pooled human serum were determined. Additionally, the reproducibility, susceptibility prior to and after PAE determination and inter-strain variation of carbapenem PAE were evaluated. The method developed determined PAE by utilising viable counts and demonstrated carbapenem PAE to be reproducible, constant over successive exposures, dependent on genera, concentration, duration of exposure, inoculum size and growth phase. In addition, carbapenem PAE was not significantly effected either by agitation, the antimicrobial removal method or the viable count diluent. At present, the mechanism underlying PAE is undetermined. It is thought to be due to either the prolonged persistence of the antimicrobial at the cellular site of action or the true recovery period from non-lethal damage. Increasing the L-lysine concentration and salinity at recovery decreased and increased the carbapenem and imipenem PAE of Pseudomonas aeruginosa, respectively. In addition, no apparent change was observed in the production of virulence factors by P.aeruginosa in PAE phase. However, alterations in cell morphology were observed throughout PAE phase, and the reappearance of normal cell morphology corresponded to the duration of PAE determined by viable count. Thus, the recovery of the penicillin binding protein target enzymes appears to be the mechanism behind carbapenem PAE in P. aeruginosa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coagulase-negative staphylococci are major aetiological agents of prosthetic valve endocarditis and an occasional cause of native valve disease. It is currently unclear how this group of usually avirulent microorganisms produces an infection associated with high rates of morbidity and mortality. The aim of this thesis was to investigate whether there are specific genotypes and/or phenotypes of coagulase-negative staphylococci with a propensity to cause infective endocarditis and to investigate any identified virulence factors as markers of infection. In this study, strains of endocarditis-related coagulase-negative staphylococci were genotyped by determining their macrorestriction genomic profile using pulsed-field gel electrophoresis. The strains were also investigated for phenotypic characteristics that predisposed the microorganisms to infect heart valves. By comparing coagulase-negative staphylococcal strains recovered from endocarditis patients with isolates from other significant infections (prosthetic device-related osteomyelitis and catheter-associated sepsis), no specific genotype or phenotype with a predilection to cause endocarditis was identified. However, the majority of the endocarditis-associated and other infection strains expressed the potential virulence factors lipase and esterase. Another approach to the investigation of virulence determinants used patient's serum to screen a Staphylococcus epidermidis NCTC 11047 genomic DNA library for cellular and secreted staphylococcal products that were expressed in vivo. The characterisation of two clones, which reacted with serum collected from a S. epidermidis-related endocarditis patient identified a staphylococcal pyruvate dehydrogenase complex E2 subunit and a novel secreted protein with homology to a Staphylococcus aureus staphyloxanthin biosynthesis protein and a secreted protein of unknown function described in Staphylococcus carnosus. Investigation of the secreted protein previously undetected in S. epidermidis, termed staphylococcal secretory antigen (SsaA), identified a potential marker of S. epidermidis-related endocarditis.