2 resultados para Virtual Power Player

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whilst some authors have portrayed the Internet as a powerful tool for business and political institutions, others have highlighted the potential of this technology for those vying to constrain or counter-balance the power of organizations, through e-collectivism and on-line action. What appears to be emerging is a contested space that has the potential to simultaneously enhance the power of organizations, whilst also acting as an enabling technology for the empowerment of grass-root networks. In this struggle, organizations are fighting for the retention of “old economy” positions, as well as the development of “new economy” power-bases. In realizing these positions, organizations and institutions are strategizing and manoeuvering in order to shape on-line networks and communications. For example, the on-line activities of individuals can be contained through various technological means, such as surveillance, and the structuring of the virtual world through the use of portals and “walled gardens”. However, loose groupings of individuals are also strategizing to ensure there is a liberation of their communication paths and practices, and to maintain the potential for mobilization within and across traditional boundaries. In this article, the unique nature and potential of the Internet are evaluated, and the struggle over this contested virtual space is explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array.