28 resultados para Vehicle drive systems.
em Aston University Research Archive
Resumo:
This thesis describes work completed on the application of H controller synthesis to the design of controllers for single axis high speed independent drive design examples. H controller synthesis was used in a single controller format and in a self-tuning regulator, a type of adaptive controller. Three types of industrial design examples were attempted using H controller synthesis, both in simulation and on a Drives Test Facility at Aston University. The results were benchmarked against a Proportional, Integral and Derivative (PID) with velocity feedforward controller (VFF), the industrial standard for this application. An analysis of the differences between a H and PID with VFF controller was completed. A direct-form H controller was determined for a limited class of weighting function and plants which shows the relationship between the weighting function, nominal plant and the controller parameters. The direct-form controller was utilised in two ways. Firstly it allowed the production of simple guidelines for the industrial design of H controllers. Secondly it was used as the controller modifier in a self-tuning regulator (STR). The STR had a controller modification time (including nominal model parameter estimation) of 8ms. A Set-Point Gain Scheduling (SPGS) controller was developed and applied to an industrial design example. The applicability of each control strategy, PID with VFF, H, SPGS and STR, was investigated and a set of general guidelines for their use was determined. All controllers developed were implemented using standard industrial equipment.
Resumo:
Wireless power transmission technology is gaining more and more attentions in city transportation applications due to its commensurate power level and efficiency with conductive power transfer means. In this paper, an inductively coupled wireless charging system for 48V light electric vehicle is proposed. The power stages of the system is evaluated and designed, including the high frequency inverter, the resonant network, full bridge rectifier, and the load matching converter. Small signal modeling and linear control technology is applied to the load matching converter for input voltage control, which effectively controls the wireless power flow. The prototype is built with a dsPIC digital signal controller; the experiments are carried out, and the results reveal nature performances of a series-series resonant inductive power charger in terms of frequency, air-gap length, power flow control, and efficiency issues.
Resumo:
The operation state of photovoltaic Module Integrated Converter (MIC) is subjected to change due to different source and load conditions, while state-swap is usually implemented with flow chart based sequential controller in the past research. In this paper, the signatures for different operational states are evaluated and investigated, which lead to an effective control integrated finite state machine (CIFSM), providing real-time state-swap as fast as the local control loop. The proposed CIFSM is implemented digitally for a boost type MIC prototype and tested under a variety of load and source conditions. The test results prove the effectiveness of the proposed CIFSM design.
Resumo:
Switched reluctance motor (SRM) drives are one competitive technology for traction motor drives. This paper proposes a novel and flexible SRM fault-tolerant topology with fault diagnosis, fault tolerance, and advanced control functions. The converter is composed of a single-phase bridge and a relay network, based on the traditional asymmetrical half-bridge driving topology. When the SRM-driving system is subjected to fault conditions including open-circuit and short-circuit faults, the proposed converter starts its fault-diagnosis procedure to locate the fault. Based on the relay network, the faulty part can be bypassed by the single-phase bridge arm, while the single-phase bridge arm and the healthy part of the converter can form a fault-tolerant topology to sustain the driving operation. A fault-tolerant control strategy is developed to decrease the influence of the fault. Furthermore, the proposed fault-tolerant strategy can be applied to three-phase 12/8 SRM and four-phase 8/6 SRM. Simulation results in MATLAB/Simulink and experiments on a three-phase 12/8 SRM and a four-phase 8/6 SRM validate the effectiveness of the proposed strategy, which may have significant economic implications in traction drive systems.
Resumo:
Switched reluctance motors (SRMs) can provide an attractive traction drive for electric vehicle applications. To lower the investment in the off-board charging station facilities, a multi-functional switched reluctance motor topology is proposed on the basis of the traditional asymmetrical half-bridge converter. The SRM phase windings are employed as input filter inductors and centre-tapped windings are also developed to form symmetrical inductors for three-phase grid supply. Owing to the varying rotor position, phase inductors are unequal between one another. A hysteresis control scheme is therefore developed for grid-connection operation. In addition to AC supplies, the proposed topology can also supports the DC-source charging. A new current sharing strategy is employed to diminish the influence of the unequal winding inductances. The simulation and experimental tests are carried out to verify the proposed topology and control methods. Since this work eliminates the need for building charging station infrastructure, its potential economic impact on the automotive market can be significant.
Resumo:
INTRODUCTION: Liposomes remain at the forefront of drug and vaccine design owing to their well-documented abilities to act as delivery vehicles. Nevertheless, the concept of liposomes as delivery vehicles is not a new one, with most works focusing on their use for the delivery of genes and drugs. However, in the last 10 years a significant amount of research has focused on using liposomes as vaccine adjuvants, not only as an antigen delivery vehicle but also as a tool to increase the immunogenicity of peptide and protein antigens. AREAS COVERED: This paper reviews liposomal adjuvants now in vaccine development, with particular emphasis on their adjuvant mechanism and how specific physicochemical characteristics of liposomes affect the immune response. The inclusion of immunomodulators is also discussed, with prominence given to Toll-like receptor ligands. EXPERT OPINION: The use of liposomes as vaccine delivery systems is evolving rapidly owing to the combined increase in technological advances and understanding of the immune system. Liposomes that contain and deliver immunostimulators and antigens are now being developed to target diseases that require stimulation of both humoral and cell-mediated immune responses. The CAF liposomal system, described in detail in this review, is one liposomal model that shows such flexibility.
Resumo:
There is an increase in the use of multi-pulse, rectifier-fed motor-drive equipment on board more-electric aircraft. Motor drives with feedback control appear as constant power loads to the rectifiers, which can cause instability of the DC filter capacitor voltage at the output of the rectifier. This problem can be exacerbated by interactions between rectifiers that share a common source impedance. In order that such a system can be analysed, there is a need for average, dynamic models of systems of rectifiers. In this study, an efficient, compact method for deriving the approximate, linear, large-signal, average models of two heterogeneous systems of rectifiers, which are fed from a common source impedance, is presented. The models give insight into significant interaction effects that occur between the converters, and that arise through the shared source impedance. First, a 6-pulse and doubly wound, transformer-fed, 12-pulse rectifier system is considered, followed by a 6-pulse and autotransformer-fed, 12-pulse rectifier system. The system models are validated against detailed simulations and laboratory prototypes, and key characteristics of the two system types are compared.
Resumo:
The thesis describes an investigation into methods for the specification, design and implementation of computer control systems for flexible manufacturing machines comprising multiple, independent, electromechanically-driven mechanisms. An analysis is made of the elements of conventional mechanically-coupled machines in order that the operational functions of these elements may be identified. This analysis is used to define the scope of requirements necessary to specify the format, function and operation of a flexible, independently driven mechanism machine. A discussion of how this type of machine can accommodate modern manufacturing needs of high-speed and flexibility is presented. A sequential method of capturing requirements for such machines is detailed based on a hierarchical partitioning of machine requirements from product to independent drive mechanism. A classification of mechanisms using notations, including Data flow diagrams and Petri-nets, is described which supports capture and allows validation of requirements. A generic design for a modular, IDM machine controller is derived based upon hierarchy of control identified in these machines. A two mechanism experimental machine is detailed which is used to demonstrate the application of the specification, design and implementation techniques. A computer controller prototype and a fully flexible implementation for the IDM machine, based on Petri-net models described using the concurrent programming language Occam, is detailed. The ability of this modular computer controller to support flexible, safe and fault-tolerant operation of the two intermittent motion, discrete-synchronisation independent drive mechanisms is presented. The application of the machine development methodology to industrial projects is established.
Resumo:
Software development methodologies are becoming increasingly abstract, progressing from low level assembly and implementation languages such as C and Ada, to component based approaches that can be used to assemble applications using technologies such as JavaBeans and the .NET framework. Meanwhile, model driven approaches emphasise the role of higher level models and notations, and embody a process of automatically deriving lower level representations and concrete software implementations. The relationship between data and software is also evolving. Modern data formats are becoming increasingly standardised, open and empowered in order to support a growing need to share data in both academia and industry. Many contemporary data formats, most notably those based on XML, are self-describing, able to specify valid data structure and content, and can also describe data manipulations and transformations. Furthermore, while applications of the past have made extensive use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by the field of dynamic data driven application systems. The combination of empowered data formats and high level software development methodologies forms the basis of modern game development technologies, which drive software capabilities and runtime behaviour using empowered data formats describing game content. While low level libraries provide optimised runtime execution, content data is used to drive a wide variety of interactive and immersive experiences. This thesis describes the Fluid project, which combines component based software development and game development technologies in order to define novel component technologies for the description of data driven component based applications. The thesis makes explicit contributions to the fields of component based software development and visualisation of spatiotemporal scenes, and also describes potential implications for game development technologies. The thesis also proposes a number of developments in dynamic data driven application systems in order to further empower the role of data in this field.
Resumo:
Topical and transdermal formulations are promising platforms for the delivery of drugs. A unit dose topical or transdermal drug delivery system that optimises the solubility of drugs within the vehicle provides a novel dosage form for efficacious delivery that also offers a simple manufacture technique is desirable. This study used Witepsol® H15 wax as a abase for the delivery system. One aspect of this project involved determination of the solubility of ibuprofen, flurbiprofen and naproxen in the was using microscopy, Higuchi release kinetics, HyperDSC and mathematical modelling techniques. Correlations between the results obtained via these techniques were noted with additional merits such as provision of valuable information on drug release kinetics and possible interactions between the drug and excipients. A second aspect of this project involved the incorporation of additional excipients: Tween 20 (T), Carbopol®971 (C) and menthol (M) to the wax formulation. On in vitro permeation through porcine skin, the preferred formulations were: ibuprofen (5% w/w) within Witepsol®H15 + 1% w/w T; flurbiprofen (10% w/w) within Witepsol®H15 + 1% w/w T; naproxen (5% w/w) within Witepsol®H15 + 1% w/w T + 1% C and sodium diclofenac (10% w/w) within Witepsol®H15 + 1% w/w T + 1% w/w T + 1% w/w C + 5% w/w M. Unit dose transdermal tablets containing ibuprofen and diclofenac were produced with improved flux compared to marketed products; Voltarol Emugel® demonstrated flux of 1.68x10-3 cm/h compared to 123 x 10-3 cm/h for the optimised product as detailed above; Ibugel Forte® demonstrated a permeation coefficient value of 7.65 x 10-3 cm/h compared to 8.69 x 10-3 cm/h for the optimised product as described above.
Resumo:
This research focused on the formation of particulate delivery systems for the sub-unit fusion protein, Ag85B-ESAT-6, a promising tuberculosis (TB) vaccine candidate. Initial work concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyl dioctadecyl ammonium (DDA). These studies demonstrated that addition of the immunomodulatory trehalose dibehenate (TDB) enhanced the physical stability of the system whilst also adding further adjuvanticity. Indeed, this formulation was effective in stimulating both a cell mediated and humoural immune response. In order to investigate an alternative to the DDA-TDB system, microspheres based on poly(DL-lactide-co-glycolide) (PLGA) incorporating the adjuvants DDA and TDB, either alone or in combination, were first optimised in terms of physico-chemical characteristics, followed by immunological analysis. The formulation incorporating PLGA and DDA emerged as the lead candidate, with promising protection data against TB. Subsequent optimisation of the lead microsphere formulation investigated the effect of several variables involved in the formulation process on physico-chemical and immunological characteristics of the particles produced. Further, freeze-drying studies were carried out with both sugar-based and amino acid-based cryoprotectants, in order to formulate a stable freexe-dried product. Finally, environmental scanning electron microscopy (ESEM) was investigated as a potential alternative to conventional SEM for the morphological investigation of microsphere formulations. Results revealed that the DDA-TDB liposome system proved to be the most immunologically efficient delivery vehicle studied, with high levels of antibody and cytokine production, particularly gamma-interferon (IFN-ϒ), considered the key cytokine marker for anti-mycobacterial immunity. Of the microsphere systems investigated, PLGA in combination with DDA showed the most promise, with an ability to initiate a broad spectrum of cytokine production, as well as antigen specific spleen cell proliferation comparable to that of the DDA-TDB formulation.
Resumo:
More-electric vehicle technology is becoming prevalent in a number of transportation systems because of its ability to improve efficiency and reduce costs. This paper examines the specific case of an Uninhabited Autonomous Vehicle (UAV), and the system topology and control elements required to achieve adequate dc distribution voltage bus regulation. Voltage control methods are investigated and a droop control scheme is implemented on the system. Simulation results are also presented.
Resumo:
A navigation and positioning system for an electric automatic guided vehicle has been designed and implemented on an industrial pallet truck. The system includes an optical sensor mounted on the vehicle, capable of recognizing special markers at a distance of 0.3m. Software implemented in a z-80 microprocessor controls the sensor, performs all data processing and contains the decision making processes necessary for the vehicle to navigate its way to its task location. A second microprocessor is used to control the vehicle's drive motors under instruction from the navigation unit, to accurately position the vehicle at its destination. The sensor reliably recognises markers at vehicle speeds up to 1ms- 1, and the system has been integrated into a multiprocessor controlled wire-guidance system and applied to a prototype vehicle.
Resumo:
The performance of direct workers has a significant impact on the competitiveness of many manufacturing systems. Unfortunately, system designers are ill equipped to assess this impact during the design process. An opportunity exists to assist designers by expanding the capabilities of popular simulation modelling tools, and using them as a vehicle to better consider human factors during the process of system design manufacture. To support this requirement, this paper reports on an extensive review of literature that develops a theoretical framework, which summarizes the principal factors and relationships that such a modelling tool should incorporate.