6 resultados para Vehicle body components.
em Aston University Research Archive
Resumo:
This industrial based research project was undertaken for British Leyland and arose as a result of poor system efficiency on the Maxi and Marina vehicle body build lines. The major factors in the deterioration of system efficiency were identified as: a) The introduction of a 'Gateline' system of vehicle body build. b) The degeneration of a newly introduced measured daywork payment scheme. By relating the conclusions of past work on payment systems to the situation at Cowley, it was concluded that a combination of poor industrial relations and a lack of managerial control had caused the measured daywork scheme to degenerate into a straightforward payment for time at work. This ellminated the monetary incentive to achieve schedule with the consequence that both inefficiency and operating costs increased. To analyse further the cause of inefficiency, a study of Marina gateline stoppage logs was carried out. This revealed that poor system efficiency on the gateline was caused more by the nature of its design than poor reliability on individual items of' plant. The consideration given to system efficiency at the design stage was found to be negligible, the main obstacles being: a) A lack of understanding pertaining to the influence of certain design factors on the efficiency of a production line. b) The absence of data and techniques to predict system efficiency at the design stage. To remedy this situation, a computer simulation study of' the design factors was carried out from which relationships with system efficiency were established and empirical efficiency equations developed. Sets of tables were compiled from the equations and efficiency data relevant to vehicle body building established from the gateline stoppage logs. Computer simulation, the equations and the tables,when used in conjunction. with good efficiency data, are shown to be accurate methods of predicting production line system.efficiency.
Resumo:
Many studies have accounted for whole body vibration effects in the fields of exercise physiology, sport and rehabilitation medicine. Generally, surface EMG is utilized to assess muscular activity during the treatment; however, large motion artifacts appear superimposed to the raw signal, making sEMG recording not suitable before any artifact filtering. Sharp notch filters, centered at vibration frequency and at its superior harmonics, have been used in previous studies, to remove the artifacts. [6, 10] However, to get rid of those artifacts some true EMG signal is lost. The purpose of this study was to reproduce the effect of motor-unit synchronization on a simulated surface EMG during vibratory stimulation. In addition, authors mean to evaluate the EMG power percentage in those bands in which are also typically located motion artifact components. Model characteristics were defined to take into account two main aspect: the muscle MUs discharge behavior and the triggering effects that appear during local vibratory stimulation. [7] Inter-pulse-interval, was characterized by a polimodal distribution related to the MU discharge frequency (IPI 55-80ms, σ=12ms) and to the correlation with the vibration period within the range of ±2 ms due to vibration stimulus. [1, 7] The signals were simulated using different stimulation frequencies from 30 to 70 Hz. The percentage of the total simulated EMG power within narrow bands centered at the stimulation frequency and its superior harmonics (± 1 Hz) resulted on average about 8% (± 2.85) of the total EMG power. However, the artifact in those bands may contain more than 40% of the total power of the total signal. [6] Our preliminary results suggest that the analysis of the muscular activity of muscle based on raw sEMG recordings and RMS evaluation, if not processed during vibratory stimulation may lead to a serious overestimation of muscular response.
Resumo:
The aim of this study is to evaluate the application of ensemble averaging to the analysis of electromyography recordings under whole body vibratory stimulation. Recordings from Rectus Femoris, collected during vibratory stimulation at different frequencies, are used. Each signal is subdivided in intervals, which time duration is related to the vibration frequency. Finally the average of the segmented intervals is performed. By using this method for the majority of the recordings the periodic components emerge. The autocorrelation of few seconds of signals confirms the presence of a pseudosinusoidal components strictly related to the soft tissues oscillations caused by the mechanical waves. © 2014 IEEE.
Resumo:
The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation. © 2010 M. Cesarelli et al.
Resumo:
Many studies have attempted to identify the different cognitive components of body representation (BR). Due to methodological issues, the data reported in these studies are often confusing. Here we summarize the fMRI data from previous studies and explore the possibility of a neural segregation between BR supporting actions (body-schema, BS) or not (non-oriented-to-action-body-representation, NA). We performed a general activation likelihood estimation meta-analysis of 59 fMRI experiments and two individual meta-analyses to identify the neural substrates of different BR. Body processing involves a wide network of areas in occipital, parietal, frontal and temporal lobes. NA selectively activates the somatosensory primary cortex and the supramarginal gyrus. BS involves the primary motor area and the right extrastriate body area. Our data suggest that motor information and recognition of body parts are fundamental to build BS. Instead, sensory information and processing of the egocentric perspective are more important for NA. In conclusion, our results strongly support the idea that different and segregated neural substrates are involved in body representations orient or not to actions.