39 resultados para Vehicle Routing Problem Multi-Trip Ricerca Operativa TSP VRP

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of finished products from depots to customers is a practical and challenging problem in logistics management. Better routing and scheduling decisions can result in higher level of customer satisfaction because more customers can be served in a shorter time. The distribution problem is generally formulated as the vehicle routing problem (VRP). Nevertheless, there is a rigid assumption that there is only one depot. In cases, for instance, where a logistics company has more than one depot, the VRP is not suitable. To resolve this limitation, this paper focuses on the VRP with multiple depots, or multi-depot VRP (MDVRP). The MDVRP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To deal with the problem efficiently, two hybrid genetic algorithms (HGAs) are developed in this paper. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method and the nearest neighbor heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different problem sizes. It is proved that the performance of HGA2 is superior to that of HGA1 in terms of the total delivery time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E-grocery is gradually becoming viable or a necessity for many families. Yet, most e-supermarkets are seen as providers of low value "staple" and bulky goods mainly. While each store has a large number of SKU available, these products are mainly necessity goods with low marginal value for hedonistic consumption. A need to acquire diverse products (e.g., organic), premium priced products (e.g., wine) for special occasions (e.g., anniversary, birthday), or products just for health related reasons (e.g., allergies, diabetes) are yet to be served via one-stop e-tailers. In this paper, we design a mathematical model that takes into account consumers' geo-demographics and multi-product sourcing capacity for creating critical mass and profit. Our mathematical model is a variant of Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), which we extend by adding intermediate locations for trucks to meet and exchange goods. We illustrate our model for the city of Istanbul using GIS maps, and discuss its various extensions as well as managerial implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Multiple Pheromone Ant Clustering Algorithm (MPACA) models the collective behaviour of ants to find clusters in data and to assign objects to the most appropriate class. It is an ant colony optimisation approach that uses pheromones to mark paths linking objects that are similar and potentially members of the same cluster or class. Its novelty is in the way it uses separate pheromones for each descriptive attribute of the object rather than a single pheromone representing the whole object. Ants that encounter other ants frequently enough can combine the attribute values they are detecting, which enables the MPACA to learn influential variable interactions. This paper applies the model to real-world data from two domains. One is logistics, focusing on resource allocation rather than the more traditional vehicle-routing problem. The other is mental-health risk assessment. The task for the MPACA in each domain was to predict class membership where the classes for the logistics domain were the levels of demand on haulage company resources and the mental-health classes were levels of suicide risk. Results on these noisy real-world data were promising, demonstrating the ability of the MPACA to find patterns in the data with accuracy comparable to more traditional linear regression models. © 2013 Polish Information Processing Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to investigate the “last mile” delivery link between a hub and spoke distribution system and its customers. The proportion of retail, as opposed to non-retail (trade) customers using this type of distribution system has been growing in the UK. The paper shows the applicability of simulation to demonstrate changes in overall delivery policy to these customers. Design/methodology/approach – A case-based research method was chosen with the aim to provide an exemplar of practice and test the proposition that simulation can be used as a tool to investigate changes in delivery policy. Findings – The results indicate the potential improvement in delivery performance, specifically in meeting timed delivery performance, that could be made by having separate retail and non-retail delivery runs from the spoke terminal to the customer. Research limitations/implications – The simulation study does not attempt to generate a vehicle routing schedule but demonstrates the effects of a change on delivery performance when comparing delivery policies. Practical implications – Scheduling and spreadsheet software are widely used and provide useful assistance in the design of delivery runs and the allocation of staff to those delivery runs. This paper demonstrates to managers the usefulness of investigating the efficacy of current design rules and presents simulation as a suitable tool for this analysis. Originality/value – A simulation model is used in a novel application to test a change in delivery policy in response to a changing delivery profile of increased retail deliveries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper formulates a logistics distribution problem as the multi-depot travelling salesman problem (MDTSP). The decision makers not only have to determine the travelling sequence of the salesman for delivering finished products from a warehouse or depot to a customer, but also need to determine which depot stores which type of products so that the total travelling distance is minimised. The MDTSP is similar to the combination of the travelling salesman and quadratic assignment problems. In this paper, the two individual hard problems or models are formulated first. Then, the problems are integrated together, that is, the MDTSP. The MDTSP is constructed as both integer nonlinear and linear programming models. After formulating the models, we verify the integrated models using commercial packages, and most importantly, investigate whether an iterative approach, that is, solving the individual models repeatedly, can generate an optimal solution to the MDTSP. Copyright © 2006 Inderscience Enterprises Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to investigate the use of 802.11e MAC to resolve the transmission control protocol (TCP) unfairness. Design/methodology/approach: The paper shows how a TCP sender may adapt its transmission rate using the number of hops and the standard deviation of recently measured round-trip times to address the TCP unfairness. Findings: Simulation results show that the proposed techniques provide even throughput by providing TCP fairness as the number of hops increases over a wireless mesh network (WMN). Research limitations/implications: Future work will examine the performance of TCP over routing protocols, which use different routing metrics. Other future work is scalability over WMNs. Since scalability is a problem with communication in multi-hop, carrier sense multiple access (CSMA) will be compared with time division multiple access (TDMA) and a hybrid of TDMA and code division multiple access (CDMA) will be designed that works with TCP and other traffic. Finally, to further improve network performance and also increase network capacity of TCP for WMNs, the usage of multiple channels instead of only a single fixed channel will be exploited. Practical implications: By allowing the tuning of the 802.11e MAC parameters that have previously been constant in 802.11 MAC, the paper proposes the usage of 802.11e MAC on a per class basis by collecting the TCP ACK into a single class and a novel congestion control method for TCP over a WMN. The key feature of the proposed TCP algorithm is the detection of congestion by measuring the fluctuation of RTT of the TCP ACK samples via the standard deviation, plus the combined the 802.11e AIFS and CWmin allowing the TCP ACK to be prioritised which allows the TCP ACKs will match the volume of the TCP data packets. While 802.11e MAC provides flexibility and flow/congestion control mechanism, the challenge is to take advantage of these features in 802.11e MAC. Originality/value: With 802.11 MAC not having flexibility and flow/congestion control mechanisms implemented with TCP, these contribute to TCP unfairness with competing flows. © Emerald Group Publishing Limited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose – The purpose of this research is to develop a holistic approach to maximize the customer service level while minimizing the logistics cost by using an integrated multiple criteria decision making (MCDM) method for the contemporary transshipment problem. Unlike the prevalent optimization techniques, this paper proposes an integrated approach which considers both quantitative and qualitative factors in order to maximize the benefits of service deliverers and customers under uncertain environments. Design/methodology/approach – This paper proposes a fuzzy-based integer linear programming model, based on the existing literature and validated with an example case. The model integrates the developed fuzzy modification of the analytic hierarchy process (FAHP), and solves the multi-criteria transshipment problem. Findings – This paper provides several novel insights about how to transform a company from a cost-based model to a service-dominated model by using an integrated MCDM method. It suggests that the contemporary customer-driven supply chain remains and increases its competitiveness from two aspects: optimizing the cost and providing the best service simultaneously. Research limitations/implications – This research used one illustrative industry case to exemplify the developed method. Considering the generalization of the research findings and the complexity of the transshipment service network, more cases across multiple industries are necessary to further enhance the validity of the research output. Practical implications – The paper includes implications for the evaluation and selection of transshipment service suppliers, the construction of optimal transshipment network as well as managing the network. Originality/value – The major advantages of this generic approach are that both quantitative and qualitative factors under fuzzy environment are considered simultaneously and also the viewpoints of service deliverers and customers are focused. Therefore, it is believed that it is useful and applicable for the transshipment service network design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The re-entrant flow shop scheduling problem (RFSP) is regarded as a NP-hard problem and attracted the attention of both researchers and industry. Current approach attempts to minimize the makespan of RFSP without considering the interdependency between the resource constraints and the re-entrant probability. This paper proposed Multi-level genetic algorithm (GA) by including the co-related re-entrant possibility and production mode in multi-level chromosome encoding. Repair operator is incorporated in the Multi-level genetic algorithm so as to revise the infeasible solution by resolving the resource conflict. With the objective of minimizing the makespan, Multi-level genetic algorithm (GA) is proposed and ANOVA is used to fine tune the parameter setting of GA. The experiment shows that the proposed approach is more effective to find the near-optimal schedule than the simulated annealing algorithm for both small-size problem and large-size problem. © 2013 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Switched reluctance motors (SRMs) can provide an attractive traction drive for electric vehicle applications. To lower the investment in the off-board charging station facilities, a multi-functional switched reluctance motor topology is proposed on the basis of the traditional asymmetrical half-bridge converter. The SRM phase windings are employed as input filter inductors and centre-tapped windings are also developed to form symmetrical inductors for three-phase grid supply. Owing to the varying rotor position, phase inductors are unequal between one another. A hysteresis control scheme is therefore developed for grid-connection operation. In addition to AC supplies, the proposed topology can also supports the DC-source charging. A new current sharing strategy is employed to diminish the influence of the unequal winding inductances. The simulation and experimental tests are carried out to verify the proposed topology and control methods. Since this work eliminates the need for building charging station infrastructure, its potential economic impact on the automotive market can be significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relationships between clustering, description length, and regularisation are pointed out, motivating the introduction of a cost function with a description length interpretation and the unusual and useful property of having its minimum approximated by the densest mode of a distribution. A simple inverse kinematics example is used to demonstrate that this property can be used to select and learn one branch of a multi-valued mapping. This property is also used to develop a method for setting regularisation parameters according to the scale on which structure is exhibited in the training data. The regularisation technique is demonstrated on two real data sets, a classification problem and a regression problem.