12 resultados para Vascular diseases

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rho GTPases are a globular, monomeric group of small signaling G-protein molecules. Rho-associated protein kinase/Rho-kinase (ROCK) is a downstream effector protein of the Rho GTPase. Rho-kinases are the potential therapeutic targets in the treatment of cardiovascular diseases. Here, we have primarily discussed the intriguing roles of ROCK in cardiovascular health in relation to nitric oxide signaling. Further, we highlighted the biphasic effects of Y-27632, a ROCK inhibitor under shear stress, which acts as an agonist of nitric oxide production in endothelial cells. The biphasic effects of this inhibitor raised the question of safety of the drug usage in treating cardiovascular diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent epidemiological evidences indicate that arsenic exposure increases risk of atherosclerosis, cardio vascular diseases (CVD) such as hypertension, atherosclerosis, coronary artery disease (CAD) and microangiopathies in addition to the serious global health concern related to its carcinogenic effects. In experiments on animals, acute and chronic exposure to arsenic directly correlates with cardiac tachyarrhythmia, and atherogenesis in a concentration and duration dependent manner. Moreover, the other effects of long-term arsenic exposure include induction of non-insulin dependent diabetes by mechanisms yet to be understood. On the other hand, there are controversial issues, gaps in knowledge, and future research priorities in accelerated incidences of CVD and mortalities in patients with HIV who are under long-termanti-retroviral therapy (ART). Although, both HIV infection itself and various components of ART initiate significant pathological alterations in the myocardium and the vasculature, simultaneous environmental exposure to arsenic which is more convincingly being recognized as a facilitator of HIV viral cycling in the infected immune cells, may contribute an additional layer of adversity in these patients. A high degree of suspicion and early screening may allow appropriate interventional guidelines to improve the quality of lives of those affected. In this mini-review which have been fortified with our own preliminary data, we will discuss some of the key current understating of chronic arsenic exposure, and its possible impact on the accelerated HIV/ART induced CVD. The review will conclude with notes on recent developments in mathematical modeling in this field that probabilistically forecast incidence prevalence as functions of aging and life style parameters, most of which vary with time themselves; this interdisciplinary approach provides a complementary kernel to conventional biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) and the sphingolipid ceramide are each partly responsible for the intracellular signal transduction of a variety of physiological, pharmacological or environmental agents. Furthermore, the enhanced production of many of these agents, that utilise ROS and ceramide as signalling intermediates, is associated with the aetiologies of several vascular diseases (e.g. atherosclerosis) or disorders of inflammatory origin (e.g. rheumatoid arthritis; RA). Excessive monocyte recruitment and uncontrolled T cell activation are both strongly implicated in the chronic inflammatory responses that are associated with these pathologies. Therefore the aims of this thesis are (1) to further elucidate the cellular responses to modulations in intracellular ceramide/ROS levels in monocytes and T cells, in order to help resolve the mechanisms of progression of these diseases and (2) to examine both existing agents (methotrexate) and novel targets for possible therapeutic manipulation. Utilising synthetic, short chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide or, stimulation of CD95 to induce ceramide formation, it is described here that ceramide targets and manipulates two discrete sites responsible for ROS generation, preceding the cellular responses of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells. In both cell types, transient elevations in mitochondrial ROS generation were observed. However, the prominent redox altering effects appear to be the ceramide-mediated reduction in cytosolic peroxide, the magnitude of which dictates in part the cellular response in U937 monocytes, Jurkat T-cells and primary human peripheral blood resting or PHA-activated T-cells in vitro. The application of synthetic ceramides to U937 monocytes for short (2 hours) or long (16 hours) treatment periods reduced the membrane expression of proteins associated with cell-cell interaction. Furthermore, ceramide treated U937 monocytes demonstrated reduced adhesion to 5 or 24 hour LPS activated human umbilical vein endothelial cells (HUVEC) but not resting HUVEC. Consequently it is hypothesised that the targeted treatment of monocytes from patients with cardiovascular diseases with short chain synthetic ceramide may reduce disease progression. Herein, the anti-inflammatory and immunosuppressant drug, methotrexate, is described to require ROS production for the induction of cytostasis or cytotoxicity in U937 monocytes and Jurkat T-cells respectively. Further, ROS are critical for methotrexate to abrogate monocyte interaction with activated HUVEC in vitro. The histological feature of RA of enhanced infiltration, survivability and hyporesponsiveness of T-cells within the diseased synovium has been suggested to arise from aberrant signalling. No difference in the concentrations of endogenous T-cell ceramide, the related lipid diacylglycerol (DAG) and cytosolic peroxide ex vivo was observed. TCR activation following PHA exposure in vitro for 72 hours did not induced maintained perturbations in DAG or ceramide in T-cells from RA patients or healthy individuals. However, T-cells from RA patients failed to upregulate cytosolic peroxide in response to PHA, unlike those from normals, despite expressing identical levels of the activation marker CD25. This inability to upregulate cytosolic peroxide may contribute to the T-cell pathology associated with RA by affecting the signalling capacity of redox sensitive biomolecules. These data highlight the importance of two distinctive cellular pools of ROS in mediating complex biological events associated with inflammatory disease and suggest that modulation of cellular ceramides represents a novel therapeutic strategy to minimise monocyte recruitment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. To establish an alternative method, sequential and diameter response analysis (SDRA), to determine dynamic retinal vessel responses and their time course in serial stimulation compared with the established method of averaged diameter responses and standard static assessment. METHODS. SDRA focuses on individual time and diameter responses, taking into account the fluctuation in baseline diameter, providing improved insight into reaction patterns when compared with established methods as delivered by retinal vessel analyzer (RVA) software. SDRA patterns were developed with measurements from 78 healthy nonsmokers and subsequently validated in a group of 21 otherwise healthy smokers. Fundus photography and retinal vessel responses were assessed by RVA, intraocular pressure by contact tonometry, and blood pressure by sphygmomanometry. RESULTS. Compared with the RVA software method, SDRA demonstrated a marked difference in retinal vessel responses to flickering light (P 0.05). As a validation of that finding, SDRA showed a strong relation between baseline retinal vessel diameter and subsequent dilatory response in both healthy subjects and smokers (P 0.001). The RVA software was unable to detect this difference or to find a difference in retinal vessel arteriovenous ratio between smokers and nonsmokers (P 0.243). However, SDRA revealed that smokers’ vessels showed both an increased level of arterial baseline diameter fluctuation before flicker stimulation (P 0.005) and an increased stiffness of retinal arterioles (P 0.035) compared with those in nonsmokers. These differences were unrelated to intraocular pressure or systemic blood pressure. CONCLUSIONS. SDRA shows promise as a tool for the assessment of vessel physiology. Further studies are needed to explore its application in patients with vascular diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Presentation Purpose:We conducted a study to determine if the spectral domain optical coherence tomography (SD-OCT) could be used as a tool to assess effective delivery of threshold and subthreshold laser burns created using 532nm green wavelength laser. Methods:10 patients planned for panretinal photocoagulation (PRP) for proliferative diabetic retinopathy were included in this study. Before initiating the full PRP, a row of moderately white laser burns as used for conventional PRP was created using 532 nm laser set at threshold power for 0.1 second with 300 microns spot size. Further rows of laser burns were created by altering the duration and power settings on the laser device. The area of the retina irradiated with laser was imaged using the Topcon SD-OCT within a few minutes of laser treatment. Results:Laser burns created using threshold power were seen on the OCT scan in all cases as a homogenous diffuse increase in reflectivity extending across the full thickness of retina (Fig 1). Retinal burns created by lowering the duration of laser pulse to 0.01s were barely visible ophthalmoscopically but were clearly detectable on the OCT scan as a localised, well-defined area of increased tissue reflectivity (Fig 2). Conclusions:OCT is a useful to tool to assess the delivery of laser burns created using the 532 nm green laser. Burns of a subthreshold intensity that may not be visible ophthalmoscopically result in retinal changes that are clearly detectable on OCT imaging. Further studies would be needed to assess the clinical effectiveness of subthreshold laser treatment for retinal vascular diseases using the 532 nm green laser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An increasing number of mechano-sensitive ion channels in endothelial cells have been identified in response to blood flow and hydrostatic pressure. However, how these channels respond to flow under different physiological and pathological conditions remains unknown. Our results show that epithelial Na+ channels (ENaCs) colocalize with hemeoxygenase-1 (HO-1) and hemeoxygenase-2 (HO-2) within the caveolae on the apical membrane of endothelial cells and are sensitive to stretch pressure and shear stress. ENaCs exhibited low levels of activity until their physiological environment was changed; in this case, the upregulation of HO-1, which in turn facilitated heme degradation and hence increased the carbon monoxide (CO) generation. CO potently increased the bioactivity of ENaCs, releasing the channel from inhibition. Endothelial cells responded to shear stress by increasing the Na+ influx rate. Elevation of intracellular Na+ concentration hampered the transportation of l-arginine, resulting in impaired nitric oxide (NO) generation. Our data suggest that ENaCs that are endogenous to human endothelial cells are mechano-sensitive. Persistent activation of ENaCs could inevitably lead to endothelium dysfunction and even vascular diseases such as atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is not known whether the association between increased plasma homocysteine (Hcy) associated with LDL modification and propensity for LDL uptake by macrophages in cardiovascular disease patients holds true in vascular dementia (VaD). Plasma from 83 subjects diagnosed with Alzheimer's disease (AD), VaD, mild cognitive impairment (MCI) and from controls was analysed to examine (1) whether LDL isolated from the plasma of VaD is biochemically and functionally distinct from that isolated from AD, MCI or controls; and (2) whether such biomarkers of LDL phenotype are related to plasma folate levels, Hcy levels and/or to disease severity. Folate and vitamin B6 levels were significantly lower in VaD subjects than in controls. VaD-LDL showed increased protein carbonyl content (p <0.05) and was more susceptible to scavenging by macrophages (p <0.05) than AD- or control-LDL. Patients from the VaD cohort were more prevalent in the lowest tertile for HDL:LDL and the upper tertile for LDL oxidation; the combined parameters of HDL cholesterol, LDL oxidation and scavenging by macrophages show 87% sensitivity towards VaD detection. The association between folate deficiency, LDL modification and dysfunction in VaD but not in AD may provide a novel biomarker assessment to discriminate between the diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The important role played by vascular factors in the pathogenesis of neurodegenerative disease has been increasingly realised over recent years. The nature and impact of ocular and systemic vascular dysfunction in the pathogenesis of comparable neurodegenerative diseases such as glaucoma and Alzheimer’s disease (AD) has however never been fully explored. The aim of this thesis was therefore to investigate the presence of macro- and micro-vascular alterations in both glaucoma and AD and to explore the relationships between these two chronic, slowly progressive neurodegenerative diseases. The principle sections and findings of this work were: 1. Is the eye a window to the brain? Retinal vascular dysfunction in Alzheimer’s disease · Mild newly diagnosed AD patients demonstrated ocular vascular dysfunction, in the form of an altered retinal vascular response to flicker light, which correlated with their degree of cognitive impairment. 2. Ocular and systemic vascular abnormalities in newly diagnosed normal tension glaucoma (NTG) patients · NTG patients demonstrated an altered retinal arterial constriction response to flicker light along with an increased systemic arterial stiffness and carotid artery intima-media thickness (IMT). These findings were not replicated by healthy age matched controls. 3. Ocular vascular dysregulation in AD compares to both POAG and NTG · AD patients demonstrated altered retinal arterial reactivity to flicker light which was comparable to that of POAG patients and altered baseline venous reactivity which was comparable to that of NTG patients. Neither alteration was replicated by healthy controls. 4. POAG and NTG: two separate diseases or one continuous entity? The vascular perspective · POAG and NTG patients demonstrated comparable alterations in nocturnal systolic blood pressure (SBP) variability, ocular perfusion pressure, retinal vascular reactivity, systemic arterial stiffness and carotid IMT. · Nocturnal SBP variability was found to correlate with both retinal artery baseline diameter fluctuation and carotid IMT across the glaucoma groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: There is evidence to suggest a beneficial role for growth factors, including vascular endothelial growth factor (VEGF), in tissue repair and proliferation after injury within the lung. Whether this effect is mediated predominantly by actions on endothelial cells or epithelial cells is unknown. This study tested the hypothesis that VEGF acts as an autocrine trophic factor for human adult alveolar epithelial cells and that under situations of pro-apoptotic stress, VEGF reduces cell death. Design: In vitro cell culture study looking at the effects of 0.03% H2O2 on both A549 and primary distal lung epithelial cells.Measurement and Main Results: Primary adult human distal lung epithelial cells express both the soluble and membrane-associated VEGF isoforms and VEGF receptors 1 and 2. At physiologically relevant doses, soluble VEGF isoforms stimulate wound repair and have a proliferative action. Specific receptor ligands confirmed that this effect was mediated by VEGF receptor 1. In addition to proliferation, we demonstrate that VEGF reduces A549 and distal lung epithelial cell apoptosis when administered after 0.03% H2O2 injury. This effect occurs due to reduced caspase-3 activation and is phosphatidylinositol 3′–kinase dependent. Conclusion: In addition to its known effects on endothelial cells, VEGF acts as a growth and anti-apoptotic factor on alveolar epithelial cells. VEGF treatment may have potential as a rescue therapy for diseases associated with alveolar epithelial damage such as acute respiratory distress syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approach and Results - Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Objective - Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/ nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Conclusions - Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A protocol with repeated stimulation cycles should be analyzed stepwise, in that each stimulation is evaluated, and a reaction pattern is identified. No two subjects will react identically, in that dilation and recovery times can vary; however, this is not reason enough to abandon a multiple stimulation cycle with fixed recovery and stimulation times. Furthermore, it enables us to examine and determine the range in which a normal subject will be placed and can then be compared to different pathophysiological states (i.e., smokers and different diseases). The purpose of our paper was to highlight the importance of evaluating these different cycles and the danger of false interpretation when averaging results. There are many different ways of evaluating dilatory responses and elasticity, but each of them must be carefully evaluated and should not be overaveraged, which can result in a loss of sensitivity and specificity.