11 resultados para Variables from CGTMSE

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The INTAMAP FP6 project has developed an interoperable framework for real-time automatic mapping of critical environmental variables by extending spatial statistical methods and employing open, web-based, data exchange protocols and visualisation tools. This paper will give an overview of the underlying problem, of the project, and discuss which problems it has solved and which open problems seem to be most relevant to deal with next. The interpolation problem that INTAMAP solves is the generic problem of spatial interpolation of environmental variables without user interaction, based on measurements of e.g. PM10, rainfall or gamma dose rate, at arbitrary locations or over a regular grid covering the area of interest. It deals with problems of varying spatial resolution of measurements, the interpolation of averages over larger areas, and with providing information on the interpolation error to the end-user. In addition, monitoring network optimisation is addressed in a non-automatic context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meta-analysis was used to quantify the moderating effects of seven properties of cognitions-accessibility, temporal stability, direct experience, involvement, certainty, ambivalence and affective-cognitive consistency-on cognition-intention and cognition-behaviour relations. Literature searches revealed 44 studies that could be included in the review. Findings showed that all of the properties, except involvement, moderated attitude-behaviour consistency. Similarly, all relevant moderators improved the consistency between intentions and behaviour. Temporal stability moderated PBC-behaviour relations, certainty moderated subjective norm-intention relations, and ambivalence, certainty, and involvement all moderated attitude-intention relations. Overall, temporal stability appeared to be the strongest moderator of cognition-behaviour relations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the dynamics of on-line learning in multilayer neural networks where training examples are sampled with repetition and where the number of examples scales with the number of network weights. The analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations for a set of macroscopic variables from which both training and generalization errors can be calculated. We focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers are introduced to improve the network performance. The dependence of the dynamics on the noise level, with and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in structurally unrealizable scenarios. The theoretical results show good agreement with those obtained by computer simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper explores the use of the optimisation procedures in SAS/OR software with application to the measurement of efficiency and productivity of decision-making units (DMUs) using data envelopment analysis (DEA) techniques. DEA was originally introduced by Charnes et al. [J. Oper. Res. 2 (1978) 429] is a linear programming method for assessing the efficiency and productivity of DMUs. Over the last two decades, DEA has gained considerable attention as a managerial tool for measuring performance of organisations and it has widely been used for assessing the efficiency of public and private sectors such as banks, airlines, hospitals, universities and manufactures. As a result, new applications with more variables and more complicated models are being introduced. Further to successive development of DEA a non-parametric productivity measure, Malmquist index, has been introduced by Fare et al. [J. Prod. Anal. 3 (1992) 85]. Employing Malmquist index, productivity growth can be decomposed into technical change and efficiency change. On the other hand, the SAS is a powerful software and it is capable of running various optimisation problems such as linear programming with all types of constraints. To facilitate the use of DEA and Malmquist index by SAS users, a SAS/MALM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear-programming models based on the selected DEA. An example is given to illustrate how one could use the code to measure the efficiency and productivity of organisations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper explores the use of the optimization procedures in SAS/OR software with application to the contemporary logistics distribution network design using an integrated multiple criteria decision making approach. Unlike the traditional optimization techniques, the proposed approach, combining analytic hierarchy process (AHP) and goal programming (GP), considers both quantitative and qualitative factors. In the integrated approach, AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, a GP model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. To facilitate the use of integrated multiple criteria decision making approach by SAS users, an ORMCDM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear programming models based on the selected GP model. An example is given to illustrate how one could use the code to design the logistics distribution network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze a Big Data set of geo-tagged tweets for a year (Oct. 2013–Oct. 2014) to understand the regional linguistic variation in the U.S. Prior work on regional linguistic variations usually took a long time to collect data and focused on either rural or urban areas. Geo-tagged Twitter data offers an unprecedented database with rich linguistic representation of fine spatiotemporal resolution and continuity. From the one-year Twitter corpus, we extract lexical characteristics for twitter users by summarizing the frequencies of a set of lexical alternations that each user has used. We spatially aggregate and smooth each lexical characteristic to derive county-based linguistic variables, from which orthogonal dimensions are extracted using the principal component analysis (PCA). Finally a regionalization method is used to discover hierarchical dialect regions using the PCA components. The regionalization results reveal interesting linguistic regional variations in the U.S. The discovered regions not only confirm past research findings in the literature but also provide new insights and a more detailed understanding of very recent linguistic patterns in the U.S.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite concerted academic interest in the strategic decision-making process (SDMP) since the 1980s, a coherent body of theory capable of guiding practice has not materialised. This is because many prior studies focus only on a single process characteristic, often rationality or comprehensiveness, and have paid insufficient attention to context. To further develop theory, research is required which examines: (i) the influence of context from multiple theoretical perspectives (e.g. upper echelons, environmental determinism); (ii) different process characteristics from both synoptic formal (e.g. rationality) and political incremental (e.g. politics) perspectives, and; (iii) the effects of context and process characteristics on a range of SDMP outcomes. Using data from 30 interviews and 357 questionnaires, this thesis addresses several opportunities for theory development by testing an integrative model which incorporates: (i) five SDMP characteristics representing both synoptic formal (procedural rationality, comprehensiveness, and behavioural integration) and political incremental (intuition, and political behaviour) perspectives; (ii) four SDMP outcome variables—strategic decision (SD) quality, implementation success, commitment, and SD speed, and; (iii) contextual variables from the four theoretical perspectives—upper echelons, SD-specific characteristics, environmental determinism, and firm characteristics. The present study makes several substantial and original contributions to knowledge. First, it provides empirical evidence of the contextual boundary conditions under which intuition and political behaviour positively influence SDMP outcomes. Second, it establishes the predominance of the upper echelons perspective; with TMT variables explaining significantly more variance in SDMP characteristics than SD specific characteristics, the external environment, and firm characteristics. A newly developed measure of top management team expertise also demonstrates highly significant direct and indirect effects on the SDMP. Finally, it is evident that SDMP characteristics and contextual variables influence a number of SDMP outcomes, not just overall SD quality, but also implementation success, commitment, and SD speed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

thesis is developed from a real life application of performance evaluation of small and medium-sized enterprises (SMEs) in Vietnam. The thesis presents two main methodological developments on evaluation of dichotomous environment variable impacts on technical efficiency. Taking into account the selection bias the thesis proposes a revised frontier separation approach for the seminal Data Envelopment Analysis (DEA) model which was developed by Charnes, Cooper, and Rhodes (1981). The revised frontier separation approach is based on a nearest neighbour propensity score matching pairing treated SMEs with their counterfactuals on the propensity score. The thesis develops order-m frontier conditioning on propensity score from the conditional order-m approach proposed by Cazals, Florens, and Simar (2002), advocated by Daraio and Simar (2005). By this development, the thesis allows the application of the conditional order-m approach with a dichotomous environment variable taking into account the existence of the self-selection problem of impact evaluation. Monte Carlo style simulations have been built to examine the effectiveness of the aforementioned developments. Methodological developments of the thesis are applied in empirical studies to evaluate the impact of training programmes on the performance of food processing SMEs and the impact of exporting on technical efficiency of textile and garment SMEs of Vietnam. The analysis shows that training programmes have no significant impact on the technical efficiency of food processing SMEs. Moreover, the analysis confirms the conclusion of the export literature that exporters are self selected into the sector. The thesis finds no significant impact from exporting activities on technical efficiency of textile and garment SMEs. However, large bias has been eliminated by the proposed approach. Results of empirical studies contribute to the understanding of the impact of different environmental variables on the performance of SMEs. It helps policy makers to design proper policy supporting the development of Vietnamese SMEs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interpolated data are an important part of the environmental information exchange as many variables can only be measured at situate discrete sampling locations. Spatial interpolation is a complex operation that has traditionally required expert treatment, making automation a serious challenge. This paper presents a few lessons learnt from INTAMAP, a project that is developing an interoperable web processing service (WPS) for the automatic interpolation of environmental data using advanced geostatistics, adopting a Service Oriented Architecture (SOA). The “rainbow box” approach we followed provides access to the functionality at a whole range of different levels. We show here how the integration of open standards, open source and powerful statistical processing capabilities allows us to automate a complex process while offering users a level of access and control that best suits their requirements. This facilitates benchmarking exercises as well as the regular reporting of environmental information without requiring remote users to have specialized skills in geostatistics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, we developed a DEA-based performance measurement methodology that is consistent with performance assessment frameworks such as the Balanced Scorecard. The methodology developed in this paper takes into account the direct or inverse relationships that may exist among the dimensions of performance to construct appropriate production frontiers. The production frontiers we obtained are deemed appropriate as they consist solely of firms with desirable levels for all dimensions of performance. These levels should be at least equal to the critical values set by decision makers. The properties and advantages of our methodology against competing methodologies are presented through an application to a real-world case study from retail firms operating in the US. A comparative analysis between the new methodology and existing methodologies explains the failure of the existing approaches to define appropriate production frontiers when directly or inversely related dimensions of performance are present and to express the interrelationships between the dimensions of performance.