8 resultados para Vanishing Theorems

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we present an approach to automated verification of floating point programs. Existing techniques for automated generation of correctness theorems are extended to produce proof obligations for accuracy guarantees and absence of floating point exceptions. A prototype automated real number theorem prover is presented, demonstrating a novel application of function interval arithmetic in the context of subdivision-based numerical theorem proving. The prototype is tested on correctness theorems for two simple yet nontrivial programs, proving exception freedom and tight accuracy guarantees automatically. The prover demonstrates a novel application of function interval arithmetic in the context of subdivision-based numerical theorem proving. The experiments show how function intervals can be used to combat the information loss problems that limit the applicability of traditional interval arithmetic in the context of hard real number theorem proving.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis various mathematical methods of studying the transient and dynamic stabiIity of practical power systems are presented. Certain long established methods are reviewed and refinements of some proposed. New methods are presented which remove some of the difficulties encountered in applying the powerful stability theories based on the concepts of Liapunov. Chapter 1 is concerned with numerical solution of the transient stability problem. Following a review and comparison of synchronous machine models the superiority of a particular model from the point of view of combined computing time and accuracy is demonstrated. A digital computer program incorporating all the synchronous machine models discussed, and an induction machine model, is described and results of a practical multi-machine transient stability study are presented. Chapter 2 reviews certain concepts and theorems due to Liapunov. In Chapter 3 transient stability regions of single, two and multi~machine systems are investigated through the use of energy type Liapunov functions. The treatment removes several mathematical difficulties encountered in earlier applications of the method. In Chapter 4 a simple criterion for the steady state stability of a multi-machine system is developed and compared with established criteria and a state space approach. In Chapters 5, 6 and 7 dynamic stability and small signal dynamic response are studied through a state space representation of the system. In Chapter 5 the state space equations are derived for single machine systems. An example is provided in which the dynamic stability limit curves are plotted for various synchronous machine representations. In Chapter 6 the state space approach is extended to multi~machine systems. To draw conclusions concerning dynamic stability or dynamic response the system eigenvalues must be properly interpreted, and a discussion concerning correct interpretation is included. Chapter 7 presents a discussion of the optimisation of power system small sjgnal performance through the use of Liapunov functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with exact solutions of Einstein's field equations of general relativity, in particular, when the source of the gravitational field is a perfect fluid with a purely electric Weyl tensor. General relativity, cosmology and computer algebra are discussed briefly. A mathematical introduction to Riemannian geometry and the tetrad formalism is then given. This is followed by a review of some previous results and known solutions concerning purely electric perfect fluids. In addition, some orthonormal and null tetrad equations of the Ricci and Bianchi identities are displayed in a form suitable for investigating these space-times. Conformally flat perfect fluids are characterised by the vanishing of the Weyl tensor and form a sub-class of the purely electric fields in which all solutions are known (Stephani 1967). The number of Killing vectors in these space-times is investigated and results presented for the non-expanding space-times. The existence of stationary fields that may also admit 0, 1 or 3 spacelike Killing vectors is demonstrated. Shear-free fluids in the class under consideration are shown to be either non-expanding or irrotational (Collins 1984) using both orthonormal and null tetrads. A discrepancy between Collins (1984) and Wolf (1986) is resolved by explicitly solving the field equations to prove that the only purely electric, shear-free, geodesic but rotating perfect fluid is the Godel (1949) solution. The irrotational fluids with shear are then studied and solutions due to Szafron (1977) and Allnutt (1982) are characterised. The metric is simplified in several cases where new solutions may be found. The geodesic space-times in this class and all Bianchi type 1 perfect fluid metrics are shown to have a metric expressible in a diagonal form. The position of spherically symmetric and Bianchi type 1 space-times in relation to the general case is also illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-linear programming algorithms for the minimum weight design of structural frames are presented in this thesis. The first, which is applied to rigidly jointed and pin jointed plane frames subject to deflexion constraints, consists of a search in a feasible design space. Successive trial designs are developed so that the feasibility and the optimality of the designs are improved simultaneously. It is found that this method is restricted lo the design of structures with few unknown variables. The second non-linear programming algorithm is presented .in a general form. This consists of two types of search, one improving feasibility and the other optimality. The method speeds up the 'feasible direction' approach by obtaining a constant weight direction vector that is influenced by dominating constraints. For pin jointed plane and space frames this method is used to obtain a 'minimum weight' design which satisfies restrictions on stresses and deflexions. The matrix force method enables the design requirements to be expressed in a general form and the design problem is automatically formulated within the computer. Examples are given to explain the method and the design criteria are extended to include member buckling. Fundamental theorems are proposed and proved to confirm that structures are inter-related. These theorems are applicable to linear elastic structures and facilitate the prediction of the behaviour of one structure from the results of analysing another, more general, or related structure. It becomes possible to evaluate the significance of each member in the behaviour of a structure and the problem of minimum weight design is extended to include shape. A method is proposed to design structures of optimum shape with stress and deflexion limitations. Finally a detailed investigation is carried out into the design of structures to study the factors that influence their shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show, using nonlinearity management, that the optimal performance in high-bit-rate dispersion-managed fiber systems with hybrid amplification is achieved for a specific amplifier spacing that is different from the asymptotically vanishing length corresponding to ideally distributed amplification [Opt. Lett. 15, 1064 (1990)]. In particular, we prove the existence of a nontrivial optimal span length for 40-Gbit/s wavelength-division transmission systems with Raman-erbium-doped fiber amplification. Optimal amplifier lengths are obtained for several dispersion maps based on commonly used transmission fibers. © 2005 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of our work is the verification of tight functional properties of numerical programs, such as showing that a floating-point implementation of Riemann integration computes a close approximation of the exact integral. Programmers and engineers writing such programs will benefit from verification tools that support an expressive specification language and that are highly automated. Our work provides a new method for verification of numerical software, supporting a substantially more expressive language for specifications than other publicly available automated tools. The additional expressivity in the specification language is provided by two constructs. First, the specification can feature inclusions between interval arithmetic expressions. Second, the integral operator from classical analysis can be used in the specifications, where the integration bounds can be arbitrary expressions over real variables. To support our claim of expressivity, we outline the verification of four example programs, including the integration example mentioned earlier. A key component of our method is an algorithm for proving numerical theorems. This algorithm is based on automatic polynomial approximation of non-linear real and real-interval functions defined by expressions. The PolyPaver tool is our implementation of the algorithm and its source code is publicly available. In this paper we report on experiments using PolyPaver that indicate that the additional expressivity does not come at a performance cost when comparing with other publicly available state-of-the-art provers. We also include a scalability study that explores the limits of PolyPaver in proving tight functional specifications of progressively larger randomly generated programs. © 2014 Springer International Publishing Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniqueness of a solution is investigated for some inverse source problems arising in linear parabolic equations. We prove new uniqueness results formulated in Theorems 3.1 and 3.2. We also show optimality of the conditions under which uniqueness holds by explicitly constructing counterexamples, that is by constructing more than one solution in the case when the conditions for uniqueness are violated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed representations (DR) of cortical channels are pervasive in models of spatio-temporal vision. A central idea that underpins current innovations of DR stems from the extension of 1-D phase into 2-D images. Neurophysiological evidence, however, provides tenuous support for a quadrature representation in the visual cortex, since even phase visual units are associated with broader orientation tuning than odd phase visual units (J.Neurophys.,88,455–463, 2002). We demonstrate that the application of the steering theorems to a 2-D definition of phase afforded by the Riesz Transform (IEEE Trans. Sig. Proc., 49, 3136–3144), to include a Scale Transform, allows one to smoothly interpolate across 2-D phase and pass from circularly symmetric to orientation tuned visual units, and from more narrowly tuned odd symmetric units to even ones. Steering across 2-D phase and scale can be orthogonalized via a linearizing transformation. Using the tiltafter effect as an example, we argue that effects of visual adaptation can be better explained by via an orthogonal rather than channel specific representation of visual units. This is because of the ability to explicitly account for isotropic and cross-orientation adaptation effect from the orthogonal representation from which both direct and indirect tilt after-effects can be explained.