4 resultados para Vacuolar membrane ABC transporters

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up awide range of possibilities for the future study of their structure and function. © The Authors Journal compilation © 2014 Biochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane bound transporters and coupled to Na+ transport. Mammalian sodium-dependent Pi co-transporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than 2 decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the C. elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vacuolar proton-ATPase (V-ATPase) is a multisubunit enzyme complex that is able to transfer protons over membranes against an electrochemical potential under ATP hydrolysis. The enzyme consists of two subcomplexes: V0, which is membrane embedded; and V1, which is cytosolic. V0 was also reported to be involved in fusion of vacuoles in yeast. We identified six genes encoding c-subunits (proteolipids) of V0 and two genes encoding F-subunits of V1 and studied the role of the V-ATPase in trafficking in Paramecium. Green fluorescent protein (GFP) fusion proteins allowed a clear subcellular localization of c- and F-subunits in the contractile vacuole complex of the osmoregulatory system and in food vacuoles. Several other organelles were also detected, in particular dense core secretory granules (trichocysts). The functional significance of the V-ATPase in Paramecium was investigated by RNA interference (RNAi), using a recently developed feeding method. A novel strategy was used to block the expression of all six c- or both F-subunits simultaneously. The V-ATPase was found to be crucial for osmoregulation, the phagocytotic pathway and the biogenesis of dense core secretory granules. No evidence was found supporting participation of V0 in membrane fusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteome analysis by conventional approaches is biased against hydrophobic membrane proteins, many of which are also of low abundance. We have isolated plasma membrane sheets from bloodstream forms of Trypanosoma brucei by subcellular fractionation, and then applied a battery of complementary protein separation and identification techniques to identify a large number of proteins in this fraction. The results of these analyses have been combined to generate a subproteome for the pellicular plasma membrane of bloodstream forms of T. brucei as well as a separate subproteome for the pellicular cytoskeleton. In parallel, we have used in silico approaches to predict the relative abundance of proteins potentially expressed by bloodstream form trypanosomes, and to identify likely polytopic membrane proteins, providing quality control for the experimentally defined plasma membrane subproteome. We show that the application of multiple high-resolution proteomic techniques to an enriched organelle fraction is a valuable approach for the characterisation of relatively intractable membrane proteomes. We present here the most complete analysis of a protozoan plasma membrane proteome to date and show the presence of a large number of integral membrane proteins, including 11 nucleoside/nucleobase transporters, 15 ion pumps and channels and a large number of adenylate cyclases hitherto listed as putative proteins.