10 resultados para VOIDS

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop the institutional configuration perspective to understand which national contexts facilitate social entrepreneurship (SE). We confirm joint effects on SE of formal regulatory (government activism), informal cognitive (postmaterialist cultural values), and informal normative (socially supportive cultural norms, or weak-tie social capital) institutions in a multilevel study of 106,484 individuals in 26 nations. We test opposing propositions from the institutional void and institutional support perspectives. Our results underscore the importance of resource support from both formal and informal institutions, and highlight motivational supply side influences on SE. They advocate greater consideration of institutional configurations in institutional theory and comparative entrepreneurship research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis has focused on three key areas of interest for femtosecond micromachining and inscription. The first area is micromachining where the work has focused on the ability to process highly repeatable, high precision machining with often extremely complex geometrical structures with little or no damage. High aspect ratio features have been demonstrated in transparent materials, metals and ceramics. Etch depth control was demonstrated especially in the work on phase mask fabrication. Practical chemical sensing and microfluidic devices were also fabricated to demonstrate the capability of the techniques developed during this work. The second area is femtosecond inscription. Here, the work has utilised the non-linear absorption mechanisms associated with femtosecond pulse-material interactions to create highly localised refractive index changes in transparent materials to create complex 3D structures. The techniques employed were then utilised in the fabrication of Phase masks and Optical Coherence Tomography (OCT) phantom calibration artefacts both of which show the potential to fill voids in the development of the fields. This especially the case for the OCT phantoms where there exists no previous artefacts of known shape, allowing for the initial specification of parameters associated with the quality of OCT machines that are being taken up across the world in industry and research. Finally the third area of focus was the combination of all of the techniques developed through work in planar samples to create a range of artefacts in optical fibres. The development of techniques and methods for compensating for the geometrical complexities associated with working with the cylindrical samples with varying refractive indices allowed for fundamental inscription parameters to be examined, structures for use as power monitors and polarisers with the optical fibres and finally the combination of femtosecond inscription and ablation techniques to create a magnetic field sensor with an optical fibre coated in Terfenol-D with directional capability. Through the development of understanding, practical techniques and equipment the work presented here demonstrates several novel pieces of research in the field of femtosecond micromachining and inscription that has provided a broad range of related fields with practical devices that were previously unavailable or that would take great cost and time to facilitate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes are well recognised for their ability to improve the delivery of a range of drugs. More commonly they are applied for the delivery of water-soluble drugs, but given their structural attributes they can also be employed as solubilising agents for low solubility drugs as well as drug targeting agents. To further explore the potential of liposomes as solubilising agents, we have investigated the role of bilayer packaging in promoting drug solubilisation in liposome bilayers. The effect of alkyl chain length and symmetry was investigated to consider if using 'mis-matched' phospholipids could be used to create 'voids' within the bilayers, and enhance bilayer loading capacity. Lipid packing was investigated using Langmuir studies, which demonstrated that increasing the alkyl chain length enhanced lipid packing, with condensed monolayer forming, whilst asymmetric lipids formed less condensed monolayers. However this more open packing did not translate into improved drug loading, with the longer chain, condensed bilayers formed from long-chain, saturated lipids offering higher drug loading capacity. These studies demonstrate that liposomes formulated from longer chain, saturated lipids offer enhanced solubilisation capacity. However the molecular size, rather than lipophilicity, of the drug to be incorporated was also a key factor dominating bilayer incorporation efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fracture properties of a series of alloys containing 15% chromium and 0.8 to 3.4% carbon are investigated using strain fracture toughness testing techniques. The object of the work is to apply a quantitative method of measuring toughness to abrasion resistant materials, which have previously been assessed on an empirical basis; and to examine the relationship between microstructure and K10 in an attempt to improve the toughness of inherently brittle materials. A review of the relevant literature includes discussion of the background to the alloy series under investigation, a survey of the development of fracture mechanics and the emergence of K10 as a toughness parameter. Metallurgical variables such as composition, heat treatment, grain size, and hot working are ???? to relate microstructure to toughness, and fractographic evidence is used to substantiate the findings. The results are applied to a model correlating ductile fracture with plastic strain instability, and the nucleation of voids. Strain induced martensite formation in austenitic structures is analysed in terms of the plastic energy dissipation mechanisms operating at the crack tip. Emphasis is placed on the lower carbon alloys in the series, and a composition put forward to optimise wear resistance and toughness. The properties of established competitive materials are compared to the proposed alloy on a toughness and cost basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes are well recognised for their ability to improve the delivery of a range of drugs. More commonly they are applied for the delivery of water-soluble drugs, but given their structural attributes, they can also be employed as solubilising agents for low solubility drugs as well as drug targeting agents. To further explore the potential of liposomes as solubilising agents, we have investigated the role of bilayer packaging in promoting drug solubilisation in liposome bilayers. The effect of alkyl chain length and symmetry was investigated to consider if using 'mis-matched' phospholipids could create 'voids' within the bilayers, and enhance bilayer loading capacity. Lipid packing was investigated using Langmuir studies, which demonstrated that increasing the alkyl chain length enhanced lipid packing, with condensed monolayers forming, whilst asymmetric lipids formed less condensed monolayers. However, this more open packing did not translate into improved drug loading, with the longer chain, condensed bilayers formed from long-chain, saturated lipids offering higher drug loading capacity. These studies demonstrate that liposomes formulated from longer chain, saturated lipids offer enhanced solubilisation capacity. However the molecular size, rather than lipophilicity, of the drug to be incorporated was also a key factor dominating bilayer incorporation efficiency. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study has been made of the influence of the reinforcement/matrix interfacial strength on fatigue crack propagation in a powder metallurgy aluminum alloy 8090-SiC particulate composite. The interfacial region has been altered by two separate routes, the first involving aging of the 8090 matrix, with the subsequent formation of precipitate free zones at the boundaries, and the second consisting of oxidizing the surface of the SiC particles before their incorporation into the composite. In the naturally aged condition, oxidation of the SiC leads to a reduction in fatigue crack growth resistance at higher values of stress intensity range ΔK. This is due to a proportion of the crack growth occurring through voids formed in association with many of the weak SiC interfaces which have retained a layer of thick surface oxide after processing. On overaging no difference in crack growth rate is discernible between the oxidized and unoxidized SiC composites. It is proposed that this is due to similar levels of interfacial weakening having occurred in both composites, indicating that this is an important factor in the reduction of the high ΔK crack growth resistance of the unoxidized SiC composite on aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crack initiation was studied for asphalt mixtures under external compressive loads. High tensile localized stresses e direction of the external loads. A quantitative crack initiation criterion the edges of compressed air voids lead to the growth of wing cracks in thon was derived using pseudostrain energy balance principle. Bond energy is determined and it increases with aging and loading rate while decreases with temperature. Cohesive and adhesive cracking occur simultaneously and a method was proposed to determine the individual percentage. The crack initiation criterion is simplified and validated through comparing the predicted and measured compressive strength of the asphalt mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asphalt mixtures exhibit primary, secondary, and tertiary stages in sequence during a rutting deterioration. Many field asphalt pavements are still in service even when the asphalt layer is in the tertiary stage, and rehabilitation is not performed until a significant amount of rutting accompanied by numerous macrocracks is observed. The objective of this study was to provide a mechanistic method to model the anisotropic cracking of the asphalt mixtures in compression during the tertiary stage of rutting. Laboratory tests including nondestructive and destructive tests were performed to obtain the viscoelastic and viscofracture properties of the asphalt mixtures. Each of the measured axial and radial total strains in the destructive tests were decomposed into elastic, plastic, viscoelastic, viscoplastic, and viscofracture strains using the pseudostrain method in an extended elastic-viscoelastic correspondence principle. The viscofracture strains are caused by the crack growth, which is primarily signaled by the increase of phase angle in the tertiary flow. The viscofracture properties are characterized using the anisotropic damage densities (i.e., the ratio of the lost area caused by cracks to the original total area in orthogonal directions). Using the decomposed axial and radial viscofracture strains, the axial and radial damage densities were determined by using a dissipated pseudostrain energy balance principle and a geometric analysis of the cracks, respectively. Anisotropic pseudo J-integral Paris' laws in terms of damage densities were used to characterize the evolution of the cracks in compression. The material constants in the Paris' law are determined and found to be highly correlated. These tests, analysis, and modeling were performed on different asphalt mixtures with two binders, two air void contents, and three aging periods. Consistent results were obtained; for instance, a stiffer asphalt mixture is demonstrated to have a higher modulus, a lower phase angle, a greater flow number, and a larger n1 value (exponent of Paris' law). The calculation of the orientation of cracks demonstrates that the asphalt mixture with 4% air voids has a brittle fracture and a splitting crack mode, whereas the asphalt mixture with 7% air voids tends to have a ductile fracture and a diagonal sliding crack mode. Cracks of the asphalt mixtures in compression are inclined to propagate along the direction of the external compressive load. © 2014 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functionality of an open graded friction course (OGFC) depends on the high interconnected air voids or pores of the OGFC mixture. The authors' previous study indicated that the pores in the OGFC mixture were easily clogged by rutting deformation. Such a deformation-related clogging can cause a significant rutting-induced permeability loss in the OGFC mixture. The objective of this study was to control and reduce the rutting-induced permeability loss of the OGFC based on mixture design and layer thickness. Eight types of the OGFC mixtures with different air void contents, gradations, and nominal maximum aggregate sizes were fabricated in the laboratory. Wheel-tracking rutting tests were conducted on the OGFC slabs to simulate the deformation-related clogging. Permeability tests after different wheel load applications were performed on the rutted OGFC slabs using a falling head permeameter developed in the authors' previous study. The relationships between permeability loss and rutting depth as well as dynamic stability were developed based on the eight OGFC mixtures' test results. The thickness effects of the single-layer and the two-layer OGFC slabs were also discussed in terms of deformation-related clogging and the rutting-induced permeability loss. Results showed that the permeability coefficient decreases linearly with an increasing rutting depth of the OGFC mixtures. Rutting depth was recommended as a design index to control permeability loss of the OGFC mixture rather than the dynamic stability. Permeability loss due to deformation-related clogging can be effectively reduced by using a thicker single-layer OGFC or two-layer OGFC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.