5 resultados para VISCOPLASTIC HETEROGENEOUS MATERIALS

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quest for energy security and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting fossil derived carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Biodiesel is one of the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands. However, current practises to produce biodiesel via transesterification employing homogeneous acids and bases result in costly fuel purification processes and undesired pollution. Life-cycle calculations on biodiesel synthesis from soybean feedstock show that the single most energy intensive step is the catalytic conversion of TAGs into biodiesel, accounting for 87% of the total primary energy input, which largely arises from the quench and separation steps. The development of solid acid and base catalysts that respectively remove undesired free fatty acid (FFA) impurities, and transform naturally occurring triglycerides found within plant oils into clean biodiesel would be desirable to improve process efficiency. However, the microporous nature of many conventional catalysts limits their ability to convert bulky and viscous feeds typical of plant or algal oils. Here we describe how improved catalyst performance, and overall process efficiency can result from a combination of new synthetic materials based upon templated solid acids and bases with hierarchical structures, tailored surface properties and use of intensified process allowing continuous operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concerns over dwindling oil reserves, carbon dioxide emissions from fossil fuel sources and associated climate change is driving the urgent need for clean, renewable energy supplies. The conversion of triglycerides to biodiesel via catalytic transesterification remains an energetically efficient and attractive means to generate transportation fuel1. However, current biodiesel manufacturing routes employing soluble alkali based catalysts are very energy inefficient producing copious amounts of contaminated water waste during fuel purification. Technical advances in catalyst and reactor design and introduction of non-food based feedstocks are thus required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. This presentation will give an overview of some recent developments in the design of solid acid and base catalysts for biodiesel synthesis. A particular focus will be on the benefits of designing materials with interconnected hierarchical macro-mesoporous networks to enhance mass-transport of viscous plant oils during reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A temperature and strain rate dependent yield surface model was proposed to characterize the viscoplastic yielding of asphalt concrete. Laboratory tests were conducted on specimens that have two binders, two air void contents, and three aging periods. Strain decomposition was performed to obtain viscoplastic strain and stress-pseudostrain curves were constructed to determine the model parameters accurately and efficiently. Results indicate that a stiffer asphalt concrete has greater cohesion and strain hardening amplitude, both of which decline as temperature increases or strain rate decreases. The temperature and strain rate factors of the yield surface can be accurately determined solely by the peak stress of the strength tests. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability has become a watchword and guiding principle for modern society, and with it a growing appreciation that anthropogenic 'waste', in all its manifold forms, can offer a valuable source of energy, construction materials, chemicals and high value functional products. In the context of chemical transformations, waste materials not only provide alternative renewable feedstocks, but also a resource from which to create catalysts. Such waste-derived heterogeneous catalysts serve to improve the overall energy and atom-efficiency of existing and novel chemical processes. This review outlines key chemical transformations for which waste-derived heterogeneous catalysts have been developed, spanning biomass conversion to environmental remediation, and their benefits and disadvantages relative to conventional catalytic technologies.