9 resultados para VASCULARIZATION

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Design. An immunohistological study of surgical specimens of human intervertebral disc.Objective.To examine the presence of pleiotrophin in diseased or damaged intervertebral disc tissue and the association between its presence and the extent of tissue vascularization and innervation.Summary of Background Data. Increased levels of pleiotrophin, a growth and differentiation factor that is active in various pathophysiologic processes, including angiogenesis, has been associated with osteoarthritic changes of human articular cartilage. The association between pleiotrophin expression and pathologic conditions of the human intervertebral disc is unknown.Methods. Specimens of human lumbar intervertebral discs, obtained following surgical discectomy, were divided into 3 groups: nondegenerated discs (n = 7), degenerated discs (n = 6), and prolapsed discs (n = 11). Serial tissue sections of each specimen were immunostained to determine the presence of pleiotrophin, blood vessels (CD34-positive endothelial cells), and nerves (neurofilament 200 kDa [NF200]-positive nerve fibers).Results. Pleiotrophin immunoreactivity was seen in disc cells, endothelial cells, and in the extracellular matrix in most specimens of intervertebral disc but was most prevalent in vascularized tissue in prolapsed discs. There was a significant correlation between the presence of pleiotrophin-positive disc cells and that of CD34-positive blood vessels. NF200-positive nerves were seen in vascularized areas of more degenerated discs, but nerves did not appear to codistribute with blood vessels or pleiotrophin positivity in prolapsed discs.Conclusions. Pleiotrophin is present in pathologic human intervertebral discs, and its prevalence and distribution suggest that it may play a role in neovascularization of diseased or damaged disc tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage undergoes severe loss of proteoglycan and its constituent glycosaminoglycans (GAGs) in osteoarthritis. We hypothesize that the low GAG content of osteoarthritic cartilage renders the tissue susceptible to pathological vascularization. This was investigated using an in vitro angiogenesis model assessing endothelial cell adhesion to GAG-depleted cartilage explants. Bovine cartilage explants were treated with hyaluronidase to deplete GAG content and then seeded with fluorescently tagged human endothelial cells (HMEC-1). HMEC-1 adherence was assessed after 4 hr and 7 days. The effect of hyaluronidase treatment on GAG content, chondrocyte viability, and biochemical composition of the extracellular matrix was also determined. Hyaluronidase treatment reduced the GAG content of cartilage explants by 78 ± 3% compared with that of controls (p <0.0001). GAG depletion was associated with significantly more HMEC-1 adherence on both the surface (superficial zone) and the underside (deep zone) of the explants (both p <0.0001). The latter provided a more favorable environment for extended culture of HMEC-1 compared with the articulating surface. Hyaluronidase treatment altered the immunostaining for chondroitin sulfate epitopes, but not for lubricin. Our results support the hypothesis that articular cartilage GAGs are antiadhesive to endothelial cells and suggest that chondroitin sulfate and/or hyaluronan are responsible. The loss of these GAGs in osteoarthritis may allow osteochondral angiogenesis resulting in disease progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. The influence of mechanical load on pleiotrophin (PTM) and aggrecan expression by intervertebral disc (IVD) cells, and the effects of disc cell conditioned medium on endothelial cell migration was investigated. Objective. To examine possible interactions of mechanical loads and known pro- and antiangiogenic factors, which may regulate disc angiogenesis during degeneration. Summary of Background Data. Pleiotrophin expression can be influenced by mechanical stimulation and has been associated with disc vascularization. Disc aggrecan inhibits endothelial cell migration, suggesting an antiangiogenic role. A possible interplay between these factors is unknown. Methods. The influence of the respective predominant load (cyclic strain for anulus fibrosus and hydrostatic pressure for nucleus pulposus cells) on PTN and aggrecan expression by IVD cells was determined by real-time RT-PCR and Western blotting (PTN only). The effects of IVD cell conditioned medium on endothelial cell migration were analyzed in a bioassay using human microvascular endothelial (HMEC-1) cells. Results. Application of both mechanical loads resulted in significant alterations of gene expression of PTN (+67%, P = 0.004 in anulus cells; +29%, P = 0.03 in nucleus cells) and aggrecan (+42%, P = 0.03 in anulus cells, -25%, P = 0.03 in nucleus cells). These effects depended on the cell type, the applied load, and timescale. Conditioned media of nucleus pulposus cells enhanced HMEC-1 migration, but this effect was diminished after 2.5 MPa hydrostatic pressure, when aggrecan expression was diminished, but not 0.25 MPa, when expression levels were unchanged. Conclusion. Mechanical loading influences PTN expression by human IVD cells. Conditioned media from nucleus pulposus cell cultures stimulated HMEC-1 endothelial cell migration. This study demonstrates that the influence of mechanical loads on vascularization of the human IVD is likely to be complex and does not correlate simply with altered expression of known pro- and antiangiogenic factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomicscale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included. © 2012 The Royal Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background—The exact etiology of preeclampsia is unknown, but there is growing evidence of an imbalance in angiogenic growth factors and abnormal placentation. Hydrogen sulfide (H2S), a gaseous messenger produced mainly by cystathionine ?-lyase (CSE), is a proangiogenic vasodilator. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Methods and Results—Plasma levels of H2S were significantly decreased in women with preeclampsia (P<0.01), which was associated with reduced placental CSE expression as determined by real-time polymerase chain reaction and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine reduced placental growth factorproduction from first-trimester (8–12 weeks gestation) human placental explants and inhibited trophoblast invasion in vitro. Knockdown of CSE in human umbilical vein endothelial cells by small-interfering RNA increased the release of soluble fms-like tyrosine kinase-1 and soluble endoglin, as assessed by enzyme-linked immunosorbent assay, whereas adenoviral-mediated CSE overexpression in human umbilical vein endothelial cells inhibited their release. Administration of DL-propargylglycine to pregnant mice induced hypertension and liver damage, promoted abnormal labyrinth vascularization in the placenta, and decreased fetal growth. Finally, a slow-releasing H2S-generating compound, GYY4137, inhibited circulating soluble fms-like tyrosine kinase-1 and soluble endoglin levels and restored fetal growth in mice that was compromised by DL-propargylglycine treatment, demonstrating that the effect of CSE inhibitor was attributable to inhibition of H2S production. Conclusions—These results imply that endogenous H2S is required for healthy placental vasculature and that a decrease in CSE/H2S activity may contribute to the pathogenesis of preeclampsia. (Circulation. 2013;127:2514-2522.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY DESIGN: The effect of human intervertebral disc aggrecan on endothelial cell growth was examined using cell culture assays. OBJECTIVE: To determine the response of endothelial cells to human intervertebral disc aggrecan, and whether the amount and type of aggrecan present in the intervertebral disc may be implicated in disc vascularization. SUMMARY OF BACKGROUND DATA: Intervertebral disc degeneration has been associated with a loss of proteoglycan, and the ingrowth of blood vessels and nerves. Neovascularization is a common feature also of disc herniation. Intervertebral disc aggrecan is inhibitory to sensory nerve growth, but the effects of disc aggrecan on endothelial cell growth are not known. METHODS: Aggrecan monomers were isolated separately from the anulus fibrosus and nucleus pulposus of human lumbar intervertebral discs, and characterized to determine the amount and type of sulfated glycosaminoglycan side chains present. The effects of these aggrecan isolates on the cellular adhesion and migration of the human endothelial cell lines, HMEC-1 and EAhy-926, were examined in vitro. RESULTS: Homogenous substrata of disc aggrecan inhibited endothelial cell adhesion and cell spreading in a concentration dependent manner. In substrata choice assays, endothelial cells seeded onto collagen type I migrated over the collagen until they encountered substrata of disc aggrecan, where they either stopped migrating, retreated onto the collagen, or, more commonly, changed direction to align along the collagen-aggrecan border. The inhibitory effect of aggrecan on endothelial cell migration was concentration dependent, and reduced by enzymatic treatment of the aggrecan monomers with a combination of chondroitinase ABC and keratinase/keratinase II. Anulus fibrosus aggrecan was more inhibitory to endothelial cell adhesion than nucleus pulposus aggrecan. However, this difference did not relate to the extent to which the different aggrecan isolates were charged, as determined by colorimetric assay with 1,9-dimethylmethylene blue, or to marked differences in the distribution of chondroitin sulfated and keratan sulfated side chains. CONCLUSIONS: Human intervertebral disc aggrecan is inhibitory to endothelial cell migration, and this inhibitory effect appears to depend, in part, on the presence of glycosaminoglycan side chains on the aggrecan monomer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background-The exact etiology of preeclampsia is unknown, but there is growing evidence of an imbalance in angiogenic growth factors and abnormal placentation. Hydrogen sulfide (H2S), a gaseous messenger produced mainly by cystathionine γ-lyase (CSE), is a proangiogenic vasodilator. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Methods and Results-Plasma levels of H2S were significantly decreased in women with preeclampsia (P<0.01), which was associated with reduced placental CSE expression as determined by real-time polymerase chain reaction and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine reduced placental growth factorproduction from first-trimester (8-12 weeks gestation) human placental explants and inhibited trophoblast invasion in vitro. Knockdown of CSE in human umbilical vein endothelial cells by small-interfering RNA increased the release of soluble fms-like tyrosine kinase-1 and soluble endoglin, as assessed by enzyme-linked immunosorbent assay, whereas adenoviral-mediated CSE overexpression in human umbilical vein endothelial cells inhibited their release. Administration of DL-propargylglycine to pregnant mice induced hypertension and liver damage, promoted abnormal labyrinth vascularization in the placenta, and decreased fetal growth. Finally, a slow-releasing H2S-generating compound, GYY4137, inhibited circulating soluble fms-like tyrosine kinase-1 and soluble endoglin levels and restored fetal growth in mice that was compromised by DL-propargylglycine treatment, demonstrating that the effect of CSE inhibitor was attributable to inhibition of H2S production. Conclusions-These results imply that endogenous H2S is required for healthy placental vasculature and that a decrease in CSE/H2S activity may contribute to the pathogenesis of preeclampsia. © 2013 American Heart Association, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preeclampsia is a hypertensive disorder of pregnancy caused by abnormal placental function, partly because of chronic hypoxia at the utero-placental junction. The increase in levels of soluble vascular endothelial growth factor receptor 1, an antiangiogenic agent known to inhibit placental vascularization, is an important cellular factor implicated in the onset of preeclampsia. We investigated the ligand urotensin II (U-II), a potent endogenous vasoconstrictor and proangiogenic agent, for which levels have been reported to increase in patients with preeclampsia. We hypothesized that an increased sensitivity to U-II in preeclampsia might be achieved by upregulation of placental U-II receptors. We further investigated the role of U-II receptor stimulation on soluble vascular endothelial growth factor receptor 1 release in placental explants from diseased and normal patients. Immunohistochemistry, real-time PCR, and Western blotting analysis revealed that U-II receptor expression was significantly upregulated in preeclampsia placentas compared with controls (P<0.01). Cellular models of syncytiotrophoblast and vascular endothelial cells subjected to hypoxic conditions revealed an increase in U-II receptor levels in the syncytiotrophoblast model. This induction is regulated by the transcriptional activator hypoxia-inducible factor 1a. U-II treatment is associated with increased secretion of soluble vascular endothelial growth factor receptor 1 only in preeclamptic placental explants under hypoxia but not in control conditions. Interestingly, normal placental explants did not respond to U-II stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Low circulating levels of placenta growth factor (PlGF) is strongly associated with the onset of preeclampsia, a maternal hypertensive disorder characterized by high blood pressure and proteinuria after 20 weeks of gestation. Although, PlGF-deficient mice are born healthy and fertile at a Mendelian ratio, the physiological importance of PlGF in the pathogenesis of preeclampsia is unclear. We hypothesised that decreased levels of PlGF in pregnancy exacerbates the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1. METHODS: Pregnant PlGF-/- mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at high (i) 1.5x109 pfu/ml and low (ii) 0.5x109 pfu/ml doses. Mean arterial blood pressure (MBP), biochemical and histological assessments of maternal kidney, placenta and embryos were performed. RESULTS: Ad-sFlt-1 significantly increased MBP and induced severe glomerular endotheliosis in PlGF-/- mice at E10.5 gestation compared to wild-type animals. High sFlt-1 also significantly elevated albumincreatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury.At a high dose of sFlt-1, there was complete fetal resorption in the pregnant PlGF-/- mice, and even the lower dose of sFlt-1 induced severe fetal resorption and abnormal placental vascularization. Hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria in Ad-sFlt-1 treated pregnant PlGF-/- mice. To determine if placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/- placentas and embryos were generated in wild-time dams and exposed to high sFlt-1 environment. This resulted in reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF-/- mice. CONCLUSIONS: Placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 in preeclampsia and the hydrogen sulphide pathway may rescue preeclampsia phenotypes.