58 resultados para User-centered system design

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a methodology: 'decision rules for analyzing manufacturing activities', which is designed to be a practical system of enquiry linking a strategic analysis to the design of production systems. The paper describes the development of the system, an industry specific design methodology, into DRAMA II which is a model that serves as an analytical tool for studying decision processes and implementation of production systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As levels of investment in advanced manufacturing systems increase, effective project management becomes ever more critical. This paper demonstrates how the model proposed by Mintzberg, Raisinghani and Theoret in 1976, which structures complicated strategic decision processes, can be applied to the design of new production systems for both descriptive and analytical research purposes. This paper sets a detailed case study concerning the design and development of an advanced manufacturing system within the Mintzberg decision model and so breaks down the decision sequence into constituent parts. It thus shows how a structured model can provide a framework for the researcher who wishes to study decision episodes in the design of manufacturing facilities in greater depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of an Expert System (ES) has been acknowledged as a very useful tool, but few studies have been carried out in its application to the design of cold rolled sections. This study involves primarily the use of an ES as a tool to improve the design process and to capture the draughtsman's knowledge. Its main purpose is to reduce substantially the time taken to produce a section drawing, thereby facilitating a speedy feedback to the customer. In order to communicate with a draughtsman, it is necessary to use sketches, symbolic representations and numerical data. This increases the complexity of programming an ES, as it is necessary to use a combination of languages so that decisions, calculations, graphical drawings and control of the system can be effected. A production system approach is used and a further step has been taken by introducing an Activator which is an autoexecute operation set up by the ES to operate an external program automatically. To speed up the absorption of new knowledge into the knowledge base, a new Learning System has been constructed. In addition to developing the ES, other software has been written to assist the design process. The section properties software has been introduced to improve the speed and consistency of calculating the section properties. A method of selecting or comparing the most appropriate section for a given specification is also implemented. Simple loading facilities have been introduced to guide the designer as to the loading capacity of the section. This research has concluded that the application of an ES is beneficial and with the activator approach, automated designing can be achieved. On average a complex drawing can be displayed on the screen in about 100 seconds, where over 95% of the initial section design time for repetitive or similar profile can be saved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case studies in copper-alloy rolling mill companies showed that existing planning systems suffer from numerous shortcomings. Where computerised systems are in use, these tend to simply emulate older manual systems and still rely heavily on modification by experienced planners on the shopfloor. As the size and number of orders increase, the task of process planners, while seeking to optimise the manufacturing objectives and keep within the production constraints, becomes extremely complicated because of the number of options for mixing or splitting the orders into batches. This thesis develops a modular approach to computerisation of the production management and planning functions. The full functional specification of each module is discussed, together with practical problems associated with their phased implementation. By adapting the Distributed Bill of Material concept from Material Requirements Planning (MRP) philosophy, the production routes generated by the planning system are broken down to identify the rolling stages required. Then to optimise the use of material at each rolling stage, the system generates an optimal cutting pattern using a new algorithm that produces practical solutions to the cutting stock problem. It is shown that the proposed system can be accommodated on a micro-computer, which brings it into the reach of typical companies in the copper-alloy rolling industry, where profit margins are traditionally low and the cost of widespread use of mainframe computers would be prohibitive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absence of a definitive approach to the design of manufacturing systems signifies the importance of a control mechanism to ensure the timely application of relevant design techniques. To provide effective control, design development needs to be continually assessed in relation to the required system performance, which can only be achieved analytically through computer simulation. The technique providing the only method of accurately replicating the highly complex and dynamic interrelationships inherent within manufacturing facilities and realistically predicting system behaviour. Owing to the unique capabilities of computer simulation, its application should support and encourage a thorough investigation of all alternative designs. Allowing attention to focus specifically on critical design areas and enabling continuous assessment of system evolution. To achieve this system analysis needs to efficient, in terms of data requirements and both speed and accuracy of evaluation. To provide an effective control mechanism a hierarchical or multi-level modelling procedure has therefore been developed, specifying the appropriate degree of evaluation support necessary at each phase of design. An underlying assumption of the proposal being that evaluation is quick, easy and allows models to expand in line with design developments. However, current approaches to computer simulation are totally inappropriate to support the hierarchical evaluation. Implementation of computer simulation through traditional approaches is typically characterized by a requirement for very specialist expertise, a lengthy model development phase, and a correspondingly high expenditure. Resulting in very little and rather inappropriate use of the technique. Simulation, when used, is generally only applied to check or verify a final design proposal. Rarely is the full potential of computer simulation utilized to aid, support or complement the manufacturing system design procedure. To implement the proposed modelling procedure therefore the concept of a generic simulator was adopted, as such systems require no specialist expertise, instead facilitating quick and easy model creation, execution and modification, through simple data inputs. Previously generic simulators have tended to be too restricted, lacking the necessary flexibility to be generally applicable to manufacturing systems. Development of the ATOMS manufacturing simulator, however, has proven that such systems can be relevant to a wide range of applications, besides verifying the benefits of multi-level modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manufacturing systems that are heavily dependent upon direct workers have an inherent complexity that the system designer is often ill-equipped to understand. This complexity is due to the interactions that cause variations in performance of the workers. Variation in human performance can be explained by many factors, however one important factor that is not currently considered in any detail during the design stage is the physical working environment. This paper presents the findings of ongoing research investigating human performance within manufacturing systems. It sets out to identify the form of the relationships that exist between changes in physical working environmental variables and operator performance. These relationships can provide managers with a decision basis when designing and managing manufacturing systems and their environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manufacturing system design is an ongoing activity within industry. Modelling tools based on Discrete Event Simulation are often used by practitioners during this design cycle. However, such tools do not adequately model the behaviour of 'direct' workers in manufacturing environments. There is an important need to expand the capability of modelling to include the relationships between human centred factors (demography, attitudes, beliefs, etc), their working environment (physical and organizational), and their subsequent performance in terms of productive routines. Therefore, this paper describes research that has formed a pilot modelling methodology that is an important first step in providing such a capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Once the factory worker was considered to be a necessary evil, soon to be replaced by robotics and automation. Today, many manufacturers appreciate that people in direct productive roles can provide important flexibility and responsiveness, and so significantly contribute to business success. The challenge is no longer to design people out of the factory, but to design factory environment that help to get the best performance from people. This paper describes research that has set out to help to achieve this by expanding the capabilities of simulation modeling tools currently used by practitioners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible Assembly Systems (FASs) are normally associated with the automatic, or robotic, assembly of products, supported by automated material handling systems. However, manual assembly operations are still prevalent within many industries, where the complexity and variety of products prohibit the development of suitable automated assembly equipment. This article presents a generic model for incorporating flexibility into the design and control of assembly operations concerned with high variety/low volume manufacture, drawing on the principles for Flexible Manufacturing Systems (FMS) and Just-in-Time (JIT) delivery. It is based on work being undertaken in an electronics company where the assembly operations have been overhauled and restructured in response to a need for greater flexibility, shorter cycle times and reduced inventory levels. The principles employed are in themselves not original. However, the way they have been combined and tailored has created a total manufacturing control system which represents a new concept for responding to demands placed on market driven firms operating in an uncertain environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using current software engineering technology, the robustness required for safety critical software is not assurable. However, different approaches are possible which can help to assure software robustness to some extent. For achieving high reliability software, methods should be adopted which avoid introducing faults (fault avoidance); then testing should be carried out to identify any faults which persist (error removal). Finally, techniques should be used which allow any undetected faults to be tolerated (fault tolerance). The verification of correctness in system design specification and performance analysis of the model, are the basic issues in concurrent systems. In this context, modeling distributed concurrent software is one of the most important activities in the software life cycle, and communication analysis is a primary consideration to achieve reliability and safety. By and large fault avoidance requires human analysis which is error prone; by reducing human involvement in the tedious aspect of modelling and analysis of the software it is hoped that fewer faults will persist into its implementation in the real-time environment. The Occam language supports concurrent programming and is a language where interprocess interaction takes place by communications. This may lead to deadlock due to communication failure. Proper systematic methods must be adopted in the design of concurrent software for distributed computing systems if the communication structure is to be free of pathologies, such as deadlock. The objective of this thesis is to provide a design environment which ensures that processes are free from deadlock. A software tool was designed and used to facilitate the production of fault-tolerant software for distributed concurrent systems. Where Occam is used as a design language then state space methods, such as Petri-nets, can be used in analysis and simulation to determine the dynamic behaviour of the software, and to identify structures which may be prone to deadlock so that they may be eliminated from the design before the program is ever run. This design software tool consists of two parts. One takes an input program and translates it into a mathematical model (Petri-net), which is used for modeling and analysis of the concurrent software. The second part is the Petri-net simulator that takes the translated program as its input and starts simulation to generate the reachability tree. The tree identifies `deadlock potential' which the user can explore further. Finally, the software tool has been applied to a number of Occam programs. Two examples were taken to show how the tool works in the early design phase for fault prevention before the program is ever run.